Skip to content

Commit

Permalink
Implement the feature importance for Decision Tree Classifier (#275)
Browse files Browse the repository at this point in the history
* store impurity in the node

* add number of features

* add a TODO

* draft feature importance

* feat

* n_samples of node

* compute_feature_importances

* unit tests

* always calculate impurity

* fix bug

* fix linter
  • Loading branch information
tushushu authored Feb 25, 2024
1 parent 886b563 commit 4eadd16
Showing 1 changed file with 85 additions and 23 deletions.
108 changes: 85 additions & 23 deletions src/tree/decision_tree_classifier.rs
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ pub struct DecisionTreeClassifier<
num_classes: usize,
classes: Vec<TY>,
depth: u16,
num_features: usize,
_phantom_tx: PhantomData<TX>,
_phantom_x: PhantomData<X>,
_phantom_y: PhantomData<Y>,
Expand Down Expand Up @@ -159,11 +160,13 @@ pub enum SplitCriterion {
#[derive(Debug, Clone)]
struct Node {
output: usize,
n_node_samples: usize,
split_feature: usize,
split_value: Option<f64>,
split_score: Option<f64>,
true_child: Option<usize>,
false_child: Option<usize>,
impurity: Option<f64>,
}

impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>> PartialEq
Expand Down Expand Up @@ -400,14 +403,16 @@ impl Default for DecisionTreeClassifierSearchParameters {
}

impl Node {
fn new(output: usize) -> Self {
fn new(output: usize, n_node_samples: usize) -> Self {
Node {
output,
n_node_samples,
split_feature: 0,
split_value: Option::None,
split_score: Option::None,
true_child: Option::None,
false_child: Option::None,
impurity: Option::None,
}
}
}
Expand Down Expand Up @@ -507,6 +512,7 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
num_classes: 0usize,
classes: vec![],
depth: 0u16,
num_features: 0usize,
_phantom_tx: PhantomData,
_phantom_x: PhantomData,
_phantom_y: PhantomData,
Expand Down Expand Up @@ -578,7 +584,7 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
count[yi[i]] += samples[i];
}

let root = Node::new(which_max(&count));
let root = Node::new(which_max(&count), y_ncols);
change_nodes.push(root);
let mut order: Vec<Vec<usize>> = Vec::new();

Expand All @@ -593,6 +599,7 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
num_classes: k,
classes,
depth: 0u16,
num_features: num_attributes,
_phantom_tx: PhantomData,
_phantom_x: PhantomData,
_phantom_y: PhantomData,
Expand Down Expand Up @@ -678,16 +685,7 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
}
}

if is_pure {
return false;
}

let n = visitor.samples.iter().sum();

if n <= self.parameters().min_samples_split {
return false;
}

let mut count = vec![0; self.num_classes];
let mut false_count = vec![0; self.num_classes];
for i in 0..n_rows {
Expand All @@ -696,7 +694,15 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
}
}

let parent_impurity = impurity(&self.parameters().criterion, &count, n);
self.nodes[visitor.node].impurity = Some(impurity(&self.parameters().criterion, &count, n));

if is_pure {
return false;
}

if n <= self.parameters().min_samples_split {
return false;
}

let mut variables = (0..n_attr).collect::<Vec<_>>();

Expand All @@ -705,14 +711,7 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
}

for variable in variables.iter().take(mtry) {
self.find_best_split(
visitor,
n,
&count,
&mut false_count,
parent_impurity,
*variable,
);
self.find_best_split(visitor, n, &count, &mut false_count, *variable);
}

self.nodes()[visitor.node].split_score.is_some()
Expand All @@ -724,7 +723,6 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>
n: usize,
count: &[usize],
false_count: &mut [usize],
parent_impurity: f64,
j: usize,
) {
let mut true_count = vec![0; self.num_classes];
Expand Down Expand Up @@ -760,6 +758,7 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>

let true_label = which_max(&true_count);
let false_label = which_max(false_count);
let parent_impurity = self.nodes()[visitor.node].impurity.unwrap();
let gain = parent_impurity
- tc as f64 / n as f64
* impurity(&self.parameters().criterion, &true_count, tc)
Expand Down Expand Up @@ -827,9 +826,9 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>

let true_child_idx = self.nodes().len();

self.nodes.push(Node::new(visitor.true_child_output));
self.nodes.push(Node::new(visitor.true_child_output, tc));
let false_child_idx = self.nodes().len();
self.nodes.push(Node::new(visitor.false_child_output));
self.nodes.push(Node::new(visitor.false_child_output, fc));
self.nodes[visitor.node].true_child = Some(true_child_idx);
self.nodes[visitor.node].false_child = Some(false_child_idx);

Expand Down Expand Up @@ -863,6 +862,33 @@ impl<TX: Number + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY>>

true
}

/// Compute feature importances for the fitted tree.
pub fn compute_feature_importances(&self, normalize: bool) -> Vec<f64> {
let mut importances = vec![0f64; self.num_features];

for node in self.nodes().iter() {
if node.true_child.is_none() && node.false_child.is_none() {
continue;
}
let left = &self.nodes()[node.true_child.unwrap()];
let right = &self.nodes()[node.false_child.unwrap()];

importances[node.split_feature] += node.n_node_samples as f64 * node.impurity.unwrap()
- left.n_node_samples as f64 * left.impurity.unwrap()
- right.n_node_samples as f64 * right.impurity.unwrap();
}
for item in importances.iter_mut() {
*item /= self.nodes()[0].n_node_samples as f64;
}
if normalize {
let sum = importances.iter().sum::<f64>();
for importance in importances.iter_mut() {
*importance /= sum;
}
}
importances
}
}

#[cfg(test)]
Expand Down Expand Up @@ -1016,6 +1042,42 @@ mod tests {
);
}

#[test]
fn test_compute_feature_importances() {
let x: DenseMatrix<f64> = DenseMatrix::from_2d_array(&[
&[1., 1., 1., 0.],
&[1., 1., 1., 0.],
&[1., 1., 1., 1.],
&[1., 1., 0., 0.],
&[1., 1., 0., 1.],
&[1., 0., 1., 0.],
&[1., 0., 1., 0.],
&[1., 0., 1., 1.],
&[1., 0., 0., 0.],
&[1., 0., 0., 1.],
&[0., 1., 1., 0.],
&[0., 1., 1., 0.],
&[0., 1., 1., 1.],
&[0., 1., 0., 0.],
&[0., 1., 0., 1.],
&[0., 0., 1., 0.],
&[0., 0., 1., 0.],
&[0., 0., 1., 1.],
&[0., 0., 0., 0.],
&[0., 0., 0., 1.],
]);
let y: Vec<u32> = vec![1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0];
let tree = DecisionTreeClassifier::fit(&x, &y, Default::default()).unwrap();
assert_eq!(
tree.compute_feature_importances(false),
vec![0., 0., 0.21333333333333332, 0.26666666666666666]
);
assert_eq!(
tree.compute_feature_importances(true),
vec![0., 0., 0.4444444444444444, 0.5555555555555556]
);
}

#[cfg_attr(
all(target_arch = "wasm32", not(target_os = "wasi")),
wasm_bindgen_test::wasm_bindgen_test
Expand Down

0 comments on commit 4eadd16

Please sign in to comment.