Skip to content

Commit

Permalink
In Naive Bayes, avoid using Option::unwrap and so avoid panicking f…
Browse files Browse the repository at this point in the history
…rom NaN values (#274)
  • Loading branch information
corebreaker authored Jan 10, 2024
1 parent 9c07925 commit 886b563
Show file tree
Hide file tree
Showing 2 changed files with 86 additions and 12 deletions.
4 changes: 2 additions & 2 deletions src/model_selection/hyper_tuning/grid_search.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
use crate::{
api::{Predictor, SupervisedEstimator},
error::{Failed, FailedError},
linalg::basic::arrays::{Array2, Array1},
numbers::realnum::RealNumber,
linalg::basic::arrays::{Array1, Array2},
numbers::basenum::Number,
numbers::realnum::RealNumber,
};

use crate::model_selection::{cross_validate, BaseKFold, CrossValidationResult};
Expand Down
94 changes: 84 additions & 10 deletions src/naive_bayes/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ use crate::linalg::basic::arrays::{Array1, Array2, ArrayView1};
use crate::numbers::basenum::Number;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
use std::{cmp::Ordering, marker::PhantomData};

/// Distribution used in the Naive Bayes classifier.
pub(crate) trait NBDistribution<X: Number, Y: Number>: Clone {
Expand Down Expand Up @@ -92,11 +92,10 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>, D: NBDistribution<TX,
/// Returns a vector of size N with class estimates.
pub fn predict(&self, x: &X) -> Result<Y, Failed> {
let y_classes = self.distribution.classes();
let (rows, _) = x.shape();
let predictions = (0..rows)
.map(|row_index| {
let row = x.get_row(row_index);
let (prediction, _probability) = y_classes
let predictions = x
.row_iter()
.map(|row| {
y_classes
.iter()
.enumerate()
.map(|(class_index, class)| {
Expand All @@ -106,11 +105,26 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>, D: NBDistribution<TX,
+ self.distribution.prior(class_index).ln(),
)
})
.max_by(|(_, p1), (_, p2)| p1.partial_cmp(p2).unwrap())
.unwrap();
*prediction
// For some reason, the max_by method cannot use NaNs for finding the maximum value, it panics.
// NaN must be considered as minimum values,
// therefore it's like NaNs would not be considered for choosing the maximum value.
// So we need to handle this case for avoiding panicking by using `Option::unwrap`.
.max_by(|(_, p1), (_, p2)| match p1.partial_cmp(p2) {
Some(ordering) => ordering,
None => {
if p1.is_nan() {
Ordering::Less
} else if p2.is_nan() {
Ordering::Greater
} else {
Ordering::Equal
}
}
})
.map(|(prediction, _probability)| *prediction)
.ok_or_else(|| Failed::predict("Failed to predict, there is no result"))
})
.collect::<Vec<TY>>();
.collect::<Result<Vec<TY>, Failed>>()?;
let y_hat = Y::from_vec_slice(&predictions);
Ok(y_hat)
}
Expand All @@ -119,3 +133,63 @@ pub mod bernoulli;
pub mod categorical;
pub mod gaussian;
pub mod multinomial;

#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::basic::arrays::Array;
use crate::linalg::basic::matrix::DenseMatrix;
use num_traits::float::Float;

type Model<'d> = BaseNaiveBayes<i32, i32, DenseMatrix<i32>, Vec<i32>, TestDistribution<'d>>;

#[derive(Debug, PartialEq, Clone)]
struct TestDistribution<'d>(&'d Vec<i32>);

impl<'d> NBDistribution<i32, i32> for TestDistribution<'d> {
fn prior(&self, _class_index: usize) -> f64 {
1.
}

fn log_likelihood<'a>(
&'a self,
class_index: usize,
_j: &'a Box<dyn ArrayView1<i32> + 'a>,
) -> f64 {
match self.0.get(class_index) {
&v @ 2 | &v @ 10 | &v @ 20 => v as f64,
_ => f64::nan(),
}
}

fn classes(&self) -> &Vec<i32> {
&self.0
}
}

#[test]
fn test_predict() {
let matrix = DenseMatrix::from_2d_array(&[&[1, 2, 3], &[4, 5, 6], &[7, 8, 9]]);

let val = vec![];
match Model::fit(TestDistribution(&val)).unwrap().predict(&matrix) {
Ok(_) => panic!("Should return error in case of empty classes"),
Err(err) => assert_eq!(
err.to_string(),
"Predict failed: Failed to predict, there is no result"
),
}

let val = vec![1, 2, 3];
match Model::fit(TestDistribution(&val)).unwrap().predict(&matrix) {
Ok(r) => assert_eq!(r, vec![2, 2, 2]),
Err(_) => panic!("Should success in normal case with NaNs"),
}

let val = vec![20, 2, 10];
match Model::fit(TestDistribution(&val)).unwrap().predict(&matrix) {
Ok(r) => assert_eq!(r, vec![20, 20, 20]),
Err(_) => panic!("Should success in normal case without NaNs"),
}
}
}

0 comments on commit 886b563

Please sign in to comment.