Official code to reproduce experiments from the ICLR 2024 paper Reward-Free Curricula for Training Robust World Models. Implements the algorithm WAKER: Weighted Acquisition of Knowledge across Environments for Robustness, as well as the baselines presented in the paper.
Install dependencies via pip:
cd waker
pip3 install -r requirements.txt
You must also install MuJoCo 210 to use the SafetyGym environments:
wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz
tar -xf mujoco.tar.gz -C ~/.mujoco
To reproduce the experiments in the paper, run the code using:
python3 waker/train.py --logdir ~/log_dir --configs domain alg expl_policy
Where:
- domain is TerrainWalker, TerrainHopper, CleanUp, or CarCleanUp.
- alg is WAKER-M, WAKER-R, DR, HardestEnvOracle, ReweightingOracle, or GradualExpansion.
- expl_policy is Plan2Explore or RandomExploration.
Example:
python3 waker/train.py --logdir ~/log_dir --configs TerrainWalker WAKER-M Plan2Explore
@article{rigter2024waker,
title={Reward-Free Curricula for Training Robust World Models},
author={Rigter, Marc and Jiang, Minqi and Posner, Ingmar},
journal={International Conference on Learning Representations},
year={2024}
}