Skip to content

Latest commit

 

History

History
48 lines (36 loc) · 1.45 KB

README.md

File metadata and controls

48 lines (36 loc) · 1.45 KB

Reward-Free Curricula for Training Robust World Models

Official code to reproduce experiments from the ICLR 2024 paper Reward-Free Curricula for Training Robust World Models. Implements the algorithm WAKER: Weighted Acquisition of Knowledge across Environments for Robustness, as well as the baselines presented in the paper.

Setup

Install dependencies via pip:

cd waker
pip3 install -r requirements.txt

You must also install MuJoCo 210 to use the SafetyGym environments:

wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz
tar -xf mujoco.tar.gz -C ~/.mujoco

Running the code

To reproduce the experiments in the paper, run the code using:

python3 waker/train.py --logdir ~/log_dir --configs domain alg expl_policy 

Where:

  • domain is TerrainWalker, TerrainHopper, CleanUp, or CarCleanUp.
  • alg is WAKER-M, WAKER-R, DR, HardestEnvOracle, ReweightingOracle, or GradualExpansion.
  • expl_policy is Plan2Explore or RandomExploration.

Example:

python3 waker/train.py --logdir ~/log_dir --configs TerrainWalker WAKER-M Plan2Explore

Citing WAKER

@article{rigter2024waker,
  title={Reward-Free Curricula for Training Robust World Models},
  author={Rigter, Marc and Jiang, Minqi and Posner, Ingmar},
  journal={International Conference on Learning Representations},
  year={2024}
}