open book question answering
OBQA Link to Dataset
-
Parser and Tagger are taken from https://github.com/tdozat/Parser-v3.
-
Parser and Tagger are trained using CoNLL 2018 dataset :
- Git clone the repo. Create the Data Directory : data/CoNLL18/UD_English-EWT. Save both the Datasets and the embeddings.
- Training Data : http://universaldependencies.org/conll18/
- Word2Vec Embeddings : https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989 . Only English Word2Vec embeddings are needed.
- Environment : TensorFlow=1.4, Scipy, Matplotlib, Psutil, Python=3.6, Pandas, Conllu
- Training Command : python main.py train ParserNetwork / TaggerNetwork
- Run Model Command : python main.py --save_dir=\$PATH_TO_NETWORK run \$INPUTFILE --output_dir=\$OUTPUTDIR
- Key Point to Note: CoNLLU format needs to be adhered strictly, Tabs between columns.
- Trained Models to be pushed at a location : [DropboxLocation]
- Present in folder ir, with its own ReadMe
- Present in notebooks and folders
- Present in filterir
- Runner and scorer are present