Skip to content

Latest commit

 

History

History
executable file
·
35 lines (24 loc) · 1.34 KB

README.md

File metadata and controls

executable file
·
35 lines (24 loc) · 1.34 KB

OBQA

open book question answering

Data Set

OBQA Link to Dataset

Parsing and Tagging of Wh Questions

  1. Parser and Tagger are taken from https://github.com/tdozat/Parser-v3.

  2. Parser and Tagger are trained using CoNLL 2018 dataset :

    • Git clone the repo. Create the Data Directory : data/CoNLL18/UD_English-EWT. Save both the Datasets and the embeddings.
    • Training Data : http://universaldependencies.org/conll18/
    • Word2Vec Embeddings : https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989 . Only English Word2Vec embeddings are needed.
    • Environment : TensorFlow=1.4, Scipy, Matplotlib, Psutil, Python=3.6, Pandas, Conllu
    • Training Command : python main.py train ParserNetwork / TaggerNetwork
    • Run Model Command : python main.py --save_dir=\$PATH_TO_NETWORK run \$INPUTFILE --output_dir=\$OUTPUTDIR
    • Key Point to Note: CoNLLU format needs to be adhered strictly, Tabs between columns.
    • Trained Models to be pushed at a location : [DropboxLocation]

Knowledge selection from OpenBook facts

  1. Present in folder ir, with its own ReadMe

Word Intersection, Union and Seq2Seq Abductive IR

  1. Present in notebooks and folders

Re-Ranking using SpaCY

  1. Present in filterir

BERT QA models

  1. Runner and scorer are present