Skip to content

zhuleia/VNet

 
 

Repository files navigation

ImageSegmentation With Vnet

This is an example of the prostate in transversal T2-weighted MR images Segment from MICCAI Grand Challenge:Prostate MR Image Segmentation 2012

Prerequisities

The following dependencies are needed:

  • numpy >= 1.11.1
  • SimpleITK >=1.0.1
  • opencv-python >=3.3.0
  • tensorflow-gpu ==1.8.0
  • pandas >=0.20.1
  • scikit-learn >= 0.17.1

How to Use

1、download trained data,download dataset:https://promise12.grand-challenge.org/download/

2、the file of PROMISE2012Image.csv,is like this format: D:\Data\PROMISE2012\Augmentation\Image/0_1.bmp D:\Data\PROMISE2012\Augmentation\Image/0_10.bmp D:\Data\PROMISE2012\Augmentation\Image/0_2.bmp ...... if you Augmentation trained data path is not D:\Data\PROMISE2012,you should change the csv file path just like this:using C:\Data\ replace D:\Data\PROMISE2012.

3、when data is prepared,just run the vnet_train_predict.py

4、training the model on the GTX1080,it take 20 hours,and i also attach the trained model in the project,you also just use the vnet_train_predict.py file to predict,and get the segmentation result.

5、download trained model:https://pan.baidu.com/s/19E9q6HIUeRB8jpuNhvE2Zg, passworld:obwu

Result

the Challenge result

the loss and model result,the example

Contact

About

Prostate MR Image Segmentation 2012

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%