Skip to content

Commit

Permalink
V1.0.0 (#156)
Browse files Browse the repository at this point in the history
* v1.0
  • Loading branch information
zhanghang1989 authored Dec 17, 2018
1 parent c2cb2aa commit ce461da
Show file tree
Hide file tree
Showing 73 changed files with 2,189 additions and 1,045 deletions.
13 changes: 0 additions & 13 deletions docs/source/experiments/cifar.rst
Original file line number Diff line number Diff line change
Expand Up @@ -57,19 +57,6 @@ Train Your Own Model
--eval evaluating


Extending the Software
----------------------

This code is well written, easy to use and extendable for your own models or datasets:

- Write your own Dataloader ``mydataset.py`` to ``dataset/`` folder

- Write your own Model ``mymodel.py`` to ``model/`` folder

- Run the program::

python main.py --dataset mydataset --model mymodel

Citation
--------

Expand Down
32 changes: 13 additions & 19 deletions docs/source/experiments/segmentation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,25 +38,19 @@ Test Pre-trained Model
.. role:: raw-html(raw)
:format: html

+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+
| Model | pixAcc | mIoU | Command | Logs |
+==================================+===========+===========+==============================================================================================+============+
| Encnet_ResNet50_PContext | 79.2% | 51.0% | :raw-html:`<a href="javascript:toggleblock('cmd_enc50_pcont')" class="toggleblock">cmd</a>` | ENC50PC_ |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+
| EncNet_ResNet101_PContext | 80.7% | 54.1% | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_pcont')" class="toggleblock">cmd</a>` | ENC101PC_ |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+
| EncNet_ResNet50_ADE | 80.1% | 41.5% | :raw-html:`<a href="javascript:toggleblock('cmd_enc50_ade')" class="toggleblock">cmd</a>` | ENC50ADE_ |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+
| EncNet_ResNet101_ADE | 81.3% | 44.4% | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_ade')" class="toggleblock">cmd</a>` | ENC101ADE_ |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+
| EncNet_ResNet101_VOC | N/A | 85.9% | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_voc')" class="toggleblock">cmd</a>` | ENC101VOC_ |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+

.. _ENC50PC: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet50_pcontext.log?raw=true
.. _ENC101PC: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet101_pcontext.log?raw=true
.. _ENC50ADE: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet50_ade.log?raw=true
.. _ENC101ADE: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet101_ade.log?raw=true
.. _ENC101VOC: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet101_voc.log?raw=true
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| Model | pixAcc | mIoU | Command |
+==================================+===========+===========+==============================================================================================+
| Encnet_ResNet50_PContext | 79.2% | 51.0% | :raw-html:`<a href="javascript:toggleblock('cmd_enc50_pcont')" class="toggleblock">cmd</a>` |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| EncNet_ResNet101_PContext | 80.7% | 54.1% | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_pcont')" class="toggleblock">cmd</a>` |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| EncNet_ResNet50_ADE | 80.1% | 41.5% | :raw-html:`<a href="javascript:toggleblock('cmd_enc50_ade')" class="toggleblock">cmd</a>` |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| EncNet_ResNet101_ADE | 81.3% | 44.4% | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_ade')" class="toggleblock">cmd</a>` |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| EncNet_ResNet101_VOC | N/A | 85.9% | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_voc')" class="toggleblock">cmd</a>` |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+


.. raw:: html
Expand Down
27 changes: 4 additions & 23 deletions docs/source/experiments/texture.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,24 +22,19 @@ Test Pre-trained Model
cd PyTorch-Encoding/
python scripts/prepare_minc.py

- Download pre-trained model (pre-trained on train-1 split using single training size of 224, with an error rate of :math:`18.96\%` using single crop on test-1 set)::
- Test pre-trained model on MINC-2500. The pre-trained weight will be automatic downloaded (pre-trained on train-1 split using single training size of 224, with an error rate of :math:`18.96\%` using single crop on test-1 set)::

cd experiments/recognition
python model/download_models.py

- Test pre-trained model on MINC-2500::

python main.py --dataset minc --model deepten --nclass 23 --resume deepten_minc.pth --eval
python main.py --dataset minc --model deepten_resnet50_minc --nclass 23 --pretrained --eval
# Teriminal Output:
# Loss: 1.005 | Err: 18.96% (1090/5750): 100%|████████████████████| 23/23 [00:18<00:00, 1.26it/s]
# Loss: 0.995 | Err: 18.957% (1090/5750): 100%|████████████████████| 23/23 [00:18<00:00, 1.26it/s]


Train Your Own Model
--------------------

- Example training command for training above model::

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --dataset minc --model deepten --nclass 23 --model deepten --batch-size 512 --lr 0.004 --epochs 80 --lr-step 60 --lr-scheduler step
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --dataset minc --model deepten_resnet50_minc --batch-size 512 --lr 0.004 --epochs 80 --lr-step 60 --lr-scheduler step --weight-decay 5e-4

- Detail training options::

Expand All @@ -62,20 +57,6 @@ Train Your Own Model
--eval evaluating


Extending the Software
----------------------

This code is well written, easy to use and extendable for your own models or datasets:

- Write your own Dataloader ``mydataset.py`` to ``dataset/`` folder

- Write your own Model ``mymodel.py`` to ``model/`` folder

- Run the program::

python main.py --dataset mydataset --model mymodel


Citation
--------

Expand Down
32 changes: 0 additions & 32 deletions docs/source/functions.rst

This file was deleted.

3 changes: 1 addition & 2 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,7 @@ An optimized PyTorch package with CUDA backend.

nn
parallel
dilated
functions
models
utils

Indices and tables
Expand Down
14 changes: 7 additions & 7 deletions docs/source/dilated.rst → docs/source/models.rst
Original file line number Diff line number Diff line change
@@ -1,9 +1,15 @@
.. role:: hidden
:class: hidden-section

encoding.dilated
encoding.models
================

.. automodule:: encoding.models.resnet
.. currentmodule:: encoding.models.resnet

ResNet
------

We provide correct dilated pre-trained ResNet and DenseNet (stride of 8) for semantic segmentation.
For dilation of DenseNet, we provide :class:`encoding.nn.DilatedAvgPool2d`.
All provided models have been verified.
Expand All @@ -14,12 +20,6 @@ All provided models have been verified.
* Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation" *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*


.. automodule:: encoding.dilated
.. currentmodule:: encoding.dilated

ResNet
------

:hidden:`ResNet`
~~~~~~~~~~~~~~~~

Expand Down
10 changes: 8 additions & 2 deletions docs/source/nn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,10 @@ Customized NN modules in Encoding Package. For Synchronized Cross-GPU Batch Norm
.. autoclass:: Encoding
:members:

:hidden:`BatchNorm2d`
:hidden:`SyncBatchNorm`
~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: BatchNorm2d
.. autoclass:: SyncBatchNorm
:members:

:hidden:`BatchNorm1d`
Expand All @@ -26,6 +26,12 @@ Customized NN modules in Encoding Package. For Synchronized Cross-GPU Batch Norm
.. autoclass:: BatchNorm1d
:members:

:hidden:`BatchNorm2d`
~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: BatchNorm2d
:members:

:hidden:`BatchNorm3d`
~~~~~~~~~~~~~~~~~~~~~~~~

Expand Down
9 changes: 3 additions & 6 deletions docs/source/notes/compile.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,10 @@ Install and Citations
=====================


Install from Source
-------------------
Installation
------------

* Install PyTorch by following the `PyTorch instructions <http://pytorch.org/>`_.
This package relies on PyTorch master branch (higher than stable released v0.4.0), please follow
`the instruction <https://github.com/pytorch/pytorch#from-source>`_ to install
PyTorch from source.
* Install PyTorch 1.0 by following the `PyTorch instructions <http://pytorch.org/>`_.

* PIP Install::

Expand Down
2 changes: 1 addition & 1 deletion encoding/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,4 @@

"""An optimized PyTorch package with CUDA backend."""
from .version import __version__
from . import nn, functions, dilated, parallel, utils, models, datasets
from . import nn, functions, parallel, utils, models, datasets, transforms
41 changes: 40 additions & 1 deletion encoding/datasets/__init__.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,16 @@
import warnings
from torchvision.datasets import *
from .base import *
from .coco import COCOSegmentation
from .ade20k import ADE20KSegmentation
from .pascal_voc import VOCSegmentation
from .pascal_aug import VOCAugSegmentation
from .pcontext import ContextSegmentation
from .cityscapes import CitySegmentation
from .imagenet import ImageNetDataset
from .minc import MINCDataset

from ..utils import EncodingDeprecationWarning

datasets = {
'coco': COCOSegmentation,
Expand All @@ -13,7 +19,40 @@
'pascal_aug': VOCAugSegmentation,
'pcontext': ContextSegmentation,
'citys': CitySegmentation,
'imagenet': ImageNetDataset,
'minc': MINCDataset,
'cifar10': CIFAR10,
}

acronyms = {
'coco': 'coco',
'pascal_voc': 'voc',
'pascal_aug': 'voc',
'pcontext': pcontext,
'ade20k': 'ade',
'citys': 'citys',
'minc': 'minc',
'cifar10': 'cifar10',
}

def get_segmentation_dataset(name, **kwargs):
def get_dataset(name, **kwargs):
return datasets[name.lower()](**kwargs)

def _make_deprecate(meth, old_name):
new_name = meth.__name__

def deprecated_init(*args, **kwargs):
warnings.warn("encoding.dataset.{} is now deprecated in favor of encoding.dataset.{}."
.format(old_name, new_name), EncodingDeprecationWarning)
return meth(*args, **kwargs)

deprecated_init.__doc__ = r"""
{old_name}(...)
.. warning::
This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`.
See :func:`~torch.nn.init.{new_name}` for details.""".format(
old_name=old_name, new_name=new_name)
deprecated_init.__name__ = old_name
return deprecated_init

get_segmentation_dataset = _make_deprecate(get_dataset, 'get_segmentation_dataset')
33 changes: 33 additions & 0 deletions encoding/datasets/ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,39 @@ def __getitem__(self, index):
mask = self.target_transform(mask)
return img, mask

def _sync_transform(self, img, mask):
# random mirror
if random.random() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
crop_size = self.crop_size
w, h = img.size
long_size = random.randint(int(self.base_size*0.5), int(self.base_size*2.5))
if h > w:
oh = long_size
ow = int(1.0 * w * long_size / h + 0.5)
short_size = ow
else:
ow = long_size
oh = int(1.0 * h * long_size / w + 0.5)
short_size = oh
img = img.resize((ow, oh), Image.BILINEAR)
mask = mask.resize((ow, oh), Image.NEAREST)
# pad crop
if short_size < crop_size:
padh = crop_size - oh if oh < crop_size else 0
padw = crop_size - ow if ow < crop_size else 0
img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)
mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=0)
# random crop crop_size
w, h = img.size
x1 = random.randint(0, w - crop_size)
y1 = random.randint(0, h - crop_size)
img = img.crop((x1, y1, x1+crop_size, y1+crop_size))
mask = mask.crop((x1, y1, x1+crop_size, y1+crop_size))
# final transform
return img, self._mask_transform(mask)

def _mask_transform(self, mask):
target = np.array(mask).astype('int64') - 1
return torch.from_numpy(target)
Expand Down
17 changes: 7 additions & 10 deletions encoding/datasets/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,15 +67,16 @@ def _sync_transform(self, img, mask):
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
crop_size = self.crop_size
# random scale (short edge from 480 to 720)
short_size = random.randint(int(self.base_size*0.5), int(self.base_size*2.0))
w, h = img.size
long_size = random.randint(int(self.base_size*0.5), int(self.base_size*2.0))
if h > w:
ow = short_size
oh = int(1.0 * h * ow / w)
oh = long_size
ow = int(1.0 * w * long_size / h + 0.5)
short_size = ow
else:
oh = short_size
ow = int(1.0 * w * oh / h)
ow = long_size
oh = int(1.0 * h * long_size / w + 0.5)
short_size = oh
img = img.resize((ow, oh), Image.BILINEAR)
mask = mask.resize((ow, oh), Image.NEAREST)
# pad crop
Expand All @@ -90,10 +91,6 @@ def _sync_transform(self, img, mask):
y1 = random.randint(0, h - crop_size)
img = img.crop((x1, y1, x1+crop_size, y1+crop_size))
mask = mask.crop((x1, y1, x1+crop_size, y1+crop_size))
# gaussian blur as in PSP
if random.random() < 0.5:
img = img.filter(ImageFilter.GaussianBlur(
radius=random.random()))
# final transform
return img, self._mask_transform(mask)

Expand Down
Loading

0 comments on commit ce461da

Please sign in to comment.