Skip to content

E-LPIPS: 通过随机变换集成实现稳健的感知图像相似性部署模型

Notifications You must be signed in to change notification settings

zh3389/elpipsDeploy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

基于E-LPIPS的感知图像相似性

如果本项目对你部署一个比较两张图像相似的模型有帮助,欢迎Start...

环境安装

pip install -r requirements.txt

部署已打包好的模型 需提前装好Docker

# 命令行执行
chmod +x cpuDeploy.sh
chmod +x gpuDeploy.sh
./cpuDeploy.sh  或者  ./gpuDeploy.sh

如何进行两张图像相似度比较

import imageio
import requests
import numpy as np


def predict(img1, img2):
    payload = {"instances": [{'input_1': img1.tolist(), "input_2": img2.tolist()}]}
    r = requests.post('http://localhost:8501/v1/models/docker_test:predict', json=payload)
    score = r.json()["predictions"][0]
    return score


if __name__ == '__main__':
    image1 = imageio.imread("img/cat.png")[:, :, 0:3].astype(np.float32) / 255.0
    image2 = imageio.imread("img/dog.png")[:, :, 0:3].astype(np.float32) / 255.0
    score = predict(image1, image2)
    print(score)

About

E-LPIPS: 通过随机变换集成实现稳健的感知图像相似性部署模型

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published