forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF FE] Stabilize L2Loss layer tests on all platforms (openvinotoolki…
…t#26151) **Details:** Stabilize L2Loss layer tests on all platforms **Ticket:** 104863 --------- Signed-off-by: Kazantsev, Roman <[email protected]>
- Loading branch information
Showing
1 changed file
with
24 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,38 +1,46 @@ | ||
# Copyright (C) 2018-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from common.tf_layer_test_class import CommonTFLayerTest | ||
|
||
rng = np.random.default_rng(233453) | ||
|
||
|
||
class TestL2Loss(CommonTFLayerTest): | ||
def create_l2_loss_net(self, input_shape): | ||
def _prepare_input(self, inputs_info): | ||
assert 'input:0' in inputs_info, "Test error: inputs_info must contain `input`" | ||
input_shape = inputs_info['input:0'] | ||
inputs_data = {} | ||
inputs_data['input:0'] = rng.uniform(-2.0, 2.0, input_shape).astype(self.input_type) | ||
return inputs_data | ||
|
||
def create_l2_loss_net(self, input_shape, input_type): | ||
self.input_type = input_type | ||
tf.compat.v1.reset_default_graph() | ||
# Create the graph and model | ||
with tf.compat.v1.Session() as sess: | ||
input = tf.compat.v1.placeholder(tf.float32, input_shape, 'input') | ||
input = tf.compat.v1.placeholder(input_type, input_shape, 'input') | ||
tf.raw_ops.L2Loss(t=input, name='l2_loss') | ||
tf.compat.v1.global_variables_initializer() | ||
|
||
tf_net = sess.graph_def | ||
|
||
return tf_net, None | ||
|
||
test_data_basic = [ | ||
dict(input_shape=[1, 2]), | ||
dict(input_shape=[2, 3, 4]), | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_basic) | ||
@pytest.mark.parametrize("input_shape", [[], [2], [1, 2], [2, 3, 4]]) | ||
@pytest.mark.parametrize("input_type", [np.float16, np.float32, np.float64]) | ||
@pytest.mark.precommit | ||
@pytest.mark.nightly | ||
def test_l2_loss_basic(self, params, ie_device, precision, ir_version, temp_dir, | ||
def test_l2_loss_basic(self, input_shape, input_type, | ||
ie_device, precision, ir_version, temp_dir, | ||
use_legacy_frontend): | ||
if ie_device == 'GPU': | ||
pytest.xfail('104863') | ||
if use_legacy_frontend: | ||
pytest.skip("L2Loss is not supported by legacy FE.") | ||
self._test(*self.create_l2_loss_net(**params), | ||
custom_eps = None | ||
if input_type == np.float16: | ||
custom_eps = 3 * 1e-3 | ||
if ie_device == 'GPU' and input_shape == []: | ||
pytest.skip("150321: Accessing out-of-range dimension on GPU") | ||
self._test(*self.create_l2_loss_net(input_shape, input_type), | ||
ie_device, precision, ir_version, temp_dir=temp_dir, | ||
use_legacy_frontend=use_legacy_frontend) | ||
use_legacy_frontend=use_legacy_frontend, custom_eps=custom_eps) |