A PyTorch implementation for paper Unsupervised Domain Adaptation by Backpropagation
InProceedings (icml2015-ganin15)
Ganin, Y. & Lempitsky, V.
Unsupervised Domain Adaptation by Backpropagation
Proceedings of the 32nd International Conference on Machine Learning, 2015
- Python 3.6
- PyTorch 1.0
MNISTmodel()
- basically the same network structure as proposed in the paper, expect for adding dropout layer in feature extractor
- large gap exsits between with and w/o dropout layer
- better result than paper
SVHNmodel()
- network structure proposed in the paper may be wrong for both 32x32 and 28x28 inputs
- change last conv layer's filter to 4x4, get similar(actually higher) result
GTSRBmodel()
AlexModel
- not successful, mainly due to the pretrained model difference
MNIST-MNISTM | SVHN-MNIST | SYNDIGITS-SVHN | SYNSIGNS-GTSRB | |
---|---|---|---|---|
Source Only | 0.5225 | 0.5490 | 0.8674 | 0.7900 |
DANN(paper) | 0.7666 | 0.7385 | 0.9109 | 0.8865 |
This Repo Source Only | - | - | - | 0.9100 |
This Repo | 0.8400 | 0.7339 | 0.8200 | - |
AMAZON-WEBVCAM | DSLR-WEBCAM | WEBCAM-DSLR | |
---|---|---|---|
Source Only | 0.6420 | 0.9610 | 0.9780 |
DANN(paper) | 0.7300 | 0.9640 | 0.9920 |
This Repo Source Only | - | - | - |
This Repo | 0.6528 | - | - |