Skip to content

whut-zhangwx/CUDA-CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CUDA-CNN

如果数学公式渲染出错,请移步我的博客CUDA-CNN查看项目的介绍

项目简介

这是一个用CUDA实现的 CNN (Convolutional Neural Network),使用MINIST数据集进行训练,epoch=10,耗时35.8s,在测试集上的分类正确率达到96.54%。

运行项目

# clone项目到本地(需要CUDA环境)
git clone [email protected]:whut-zhangwx/CUDA-CNN.git
cd ./cuda-cnn
# 编译项目
make all
# 运行项目
./CNN

网络结构

$$ \begin{array}{rcl} \text{Input Layer} & \fbox{input}\\ &\downarrow & (1,28,28)\\ \text{Conv2d Layer1} & \fbox{$C_{in}=1,C_{out}=6,kernel=6\times5\times5,stride=1$}\\ &\downarrow & (6,24,24)\\ \text{Activation} & \fbox{Sigmoid Layer}\\ &\downarrow & (6,24,24)\\ \text{Conv2d Layer2} & \fbox{$C_{in}=6,C_{out}=6,kernel=1\times4\times4,stride=4$}\\ &\downarrow & (6,6,6)\\ \text{Activation} & \fbox{Sigmoid Layer}\\ &\downarrow & (6,6,6)\\ \text{FC Layer} & \fbox{$f_{in}=216,f_{out}=10$}\\ &\downarrow & (10)\\ \text{Activation} & \fbox{Sigmoid Layer}\\ &\downarrow & (10)\\ \text{Output Layer} & \fbox{Output} \end{array} $$

$$Out = (In - Kernal + 2\times Padding)/Stride + 1$$

Forward propagation

Input layer

$$ Out_{in}[i][j] = img[i][j],\qquad i,j\in{0,1,\cdots,27} $$

Convolution layer1

Kernal size: 6×5×5, Stride: 1 Input size: 1×28×28, Output size: 6×24×24

$$ \begin{gather*} PreA_{c1}[i_2][i_3][i_4] = \sum_{i_7=0}^4\sum_{i_8=0}^{4} Weight_{c1}[i_2][i_7][i_8] \cdot Out_{in}[i_3+i_7][i_4+i_8] + Bias_{c1}[i_2]\\ i_2\in{0,1,\cdots,5};\qquad i_3,i_4\in{0,1,\cdots,23} \end{gather*} $$

Activation

$$ \begin{gather*} Out_{c1}[i_2][i_3][i_4] = \frac{1}{1 + \exp(-PreA_{c1}[i_2][i_3][i_4])}\\ i_2\in{0,1,\cdots,5};\qquad i_3,i_4\in{0,1,\cdots,23} \end{gather*} $$

Convolution layer2

Kernal size: 1×4×4, Stride: 4 Input size: 6×24×24, Output size: 6×6×6

$$ \begin{gather*} PreA_{c2}[i_2][i_3][i_4] = \sum_{i_5=0}^3\sum_{i_6=0}^{3} Weight_{c2}[i_5][i_6] \cdot Out_{c1}[i_2][4i_3+i_5][4i_4+i_6] + Bias_{c2}\\ i_2\in{0,1,\cdots,5};\qquad i_3,i_4\in{0,1,\cdots,5} \end{gather*} $$

Activation

$$ \begin{gather*} Out_{c2}[i_2][i_3][i_4] = \frac{1}{1 + \exp(-PreA_{c2}[i_2][i_3][i_4])}\\ i_2\in{0,1,\cdots,5};\qquad i_3,i_4\in{0,1,\cdots,5} \end{gather*} $$

Fully Connected Layer

Input size: 6×6×6, Output size: 10

$$ \begin{gather*} PreA_{fc}[i_1] = \sum_{i_2=0}^{5}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5} Weight_{fc}[i_1][i_2][i_3][i_4] \cdot Out_{c2}[i_2][i_3][i_4] + Bias_{fc}[i_1]\\ i_1\in{0,1,\cdots,9} \end{gather*} $$

Activation

$$ \begin{gather*} Out_{fc}[i_1] = \frac{1}{1 + \exp(-PreA_{fc}[i_1])}\\ i_1\in{0,1,\cdots,9} \end{gather*} $$

Loss Function

对于一个样本 $(img,label)$ 的输出 $Out_{fc}$, 令 $err[i], i\in{0,1,\cdots,9}$ 表示每个类别的预估错误

$$ err[i] = \begin{cases} Out_{fc}[i], & i\neq label\\ -(1-Out_{fc}[i]), & i = label \end{cases} $$

其中 $err[label]$ 本应为 $1-Out_{fc}[label]$, 但是为了方便后面求梯度时 $\frac{\partial Loss}{\partial err[i]} \cdot\frac{\partial err[i]}{\partial Out_{fc}[i]} = err[i]$ 的表示, 我们为它加了个负号. 这对计算Loss没有影响, 因为都要平方.

采用预估错误的平方和来计算损失

$$ Loss = \frac{1}{2}\sum_{i=0}^9 err[i]^2 = \frac{1}{2}(out_{fc}[label]-1)^2 + \frac{1}{2}\sum_{i=0,i\neq label}^{9}out_{fc}[i]^2 $$

Back propagation

Fully Connected Layer

$$\begin{split} \frac{\partial Loss}{\partial Weight_{fc}[i_1][i_2][i_3][i_4]} &= \frac{\partial Loss}{\partial err[i_1]} \cdot \frac{\partial err[i_1]}{\partial Out_{fc}[i_1]} \cdot \frac{\partial Out_{fc}[i_1]}{\partial PreA_{fc}[i_1]} \cdot \frac{\partial PreA_{fc}[i_1]}{\partial Weight_{fc}[i_1][i_2][i_3][i_4]} \\\ &= err[i_1] \cdot 1 \cdot Out_{fc}[i_1](1-Out_{fc}[i_1]) \cdot Out_{c2}[i_2][i_3][i_4] \end{split}$$ $$\begin{split} \frac{\partial Loss}{\partial Bias_{fc}[i_1]} &= \frac{\partial Loss}{\partial err[i_1]} \cdot \frac{\partial err[i_1]}{\partial Out_{fc}[i_1]} \cdot \frac{\partial Out_{fc}[i_1]}{\partial PreA_{fc}[i_1]} \cdot \frac{\partial PreA_{fc}[i_1]}{\partial Bias_{fc}[i_1]} \\\ &= err[i_1] \cdot 1 \cdot Out_{fc}[i_1](1-Out_{fc}[i_1]) \cdot 1 \end{split}$$

Convolution layer2

$$\begin{split} \frac{\partial Loss}{\partial Weight_{c2}[i_5][i_6]} &= \sum_{i_1=0}^{9}\sum_{i_2=0}^{5}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5} \frac{\partial Loss}{\partial err[i_1]} \cdot \frac{\partial err[i_1]}{\partial Out_{fc}[i_1]} \cdot \frac{\partial Out_{fc}[i_1]}{\partial PreA_{fc}[i_1]} \\ &\cdot \frac{\partial PreA_{fc}[i_1]}{\partial Out_{c2}[i_2][i_3][i_4]} \frac{\partial Out_{c2}[i_2][i_3][i_4]}{\partial PreA_{c2}[i_2][i_3][i_4]} \cdot \frac{\partial PreA_{c2}[i_2][i_3][i_4]}{\partial Weight_{c2}[i_5][i_6]} \\\ &= \sum_{i_1=0}^{9}\sum_{i_2=0}^{5}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5} err[i_1] \cdot 1 \cdot Out_{fc}[i_1](1-Out_{fc}[i_1])\\\ &\cdot Weight_{fc}[i_1][i_2][i_3][i_4] \cdot Out_{c2}[i_2][i_3][i_4](1-Out_{c2}[i_2][i_3][i_4]) \cdot Out_{c1}[i_2][4i_3+i_5][4i_4+i_6] \end{split}$$ $$\begin{split} \frac{\partial Loss}{\partial Bias_{c2}} &= \sum_{i_1=0}^{9}\sum_{i_2=0}^{5}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5} \frac{\partial Loss}{\partial err[i_1]} \cdot \frac{\partial err[i_1]}{\partial Out_{fc}[i_1]} \cdot \frac{\partial Out_{fc}[i_1]}{\partial PreA_{fc}[i_1]}\\\ &\cdot \frac{\partial PreA_{fc}[i_1]}{\partial Out_{c2}[i_2][i_3][i_4]} \cdot \frac{\partial Out_{c2}[i_2][i_3][i_4]}{\partial PreA_{c2}[i_2][i_3][i_4]} \cdot \frac{\partial PreA_{c2}[i_2][i_3][i_4]}{\partial Bias_{c2}} \\\ &= \sum_{i_1=0}^{9}\sum_{i_2=0}^{5}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5} err[i_1] \cdot 1 \cdot Out_{fc}[i_1](1-Out_{fc}[i_1]) \\\ &\cdot Weight_{fc}[i_1][i_2][i_3][i_4] \cdot Out_{c2}[i_2][i_3][i_4](1-Out_{c2}[i_2][i_3][i_4]) \cdot 1 \end{split}$$

Convolution layer1

$$\begin{split} \frac{\partial Loss}{\partial Weight_{c1}[i_2][i_7][i_8]} &= \sum_{i_1=0}^{9}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5}\sum_{i_5=0}^{3}\sum_{i_6=0}^{3} \frac{\partial Loss}{\partial err[i_1]} \cdot \frac{\partial err[i_1]}{\partial Out_{fc}[i_1]} \cdot \frac{\partial Out_{fc}[i_1]}{\partial PreA_{fc}[i_1]} \\ &\cdot \frac{\partial PreA_{fc}[i_1]}{\partial Out_{c2}[i_2][i_3][i_4]} \frac{\partial Out_{c2}[i_2][i_3][i_4]}{\partial PreA_{c2}[i_2][i_3][i_4]} \cdot \frac{\partial PreA_{c2}[i_2][i_3][i_4]}{\partial Out_{c1}[i_2][4i_3+i_5][4i_4+i_6]}\\\ &\cdot \frac{\partial Out_{c1}[i_2][4i_3+i_5][4i_4+i_6]}{\partial PreA_{c1}[i_2][4i_3+i_5][4i_4+i_6]} \cdot \frac{\partial PreA_{c1}[i_2][4i_3+i_5][4i_4+i_6]}{\partial Weight_{c1}[i_2][i_7][i_8]} \\\ &= \sum_{i_1=0}^{9}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5}\sum_{i_5=0}^{3}\sum_{i_6=0}^{3} err[i_1] \cdot 1 \cdot Out_{fc}[i_1](1-Out_{fc}[i_1])\\\ &\cdot Weight_{fc}[i_1][i_2][i_3][i_4] \cdot Out_{c2}[i_2][i_3][i_4](1-Out_{c2}[i_2][i_3][i_4]) \cdot Weight_{c2}[i_5][i_6]\\\ &\cdot Out_{c1}[i_2][4i_3+i_5][4i_4+i_6](1-Out_{c1}[i_2][4i_3+i_5][4i_4+i_6]) \cdot Out_{in}[4i_3+i_5+i_7][4i_4+i_6+i_8] \end{split}$$ $$\begin{split} \frac{\partial Loss}{\partial Bias_{c1}[i_2]} &= \sum_{i_1=0}^{9}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5}\sum_{i_5=0}^{3}\sum_{i_6=0}^{3} \frac{\partial Loss}{\partial err[i_1]} \cdot \frac{\partial err[i_1]}{\partial Out_{fc}[i_1]} \cdot \frac{\partial Out_{fc}[i_1]}{\partial PreA_{fc}[i_1]} \\ &\cdot \frac{\partial PreA_{fc}[i_1]}{\partial Out_{c2}[i_2][i_3][i_4]} \frac{\partial Out_{c2}[i_2][i_3][i_4]}{\partial PreA_{c2}[i_2][i_3][i_4]} \cdot \frac{\partial PreA_{c2}[i_2][i_3][i_4]}{\partial Out_{c1}[i_2][4i_3+i_5][4i_4+i_6]}\\\ &\cdot \frac{\partial Out_{c1}[i_2][4i_3+i_5][4i_4+i_6]}{\partial PreA_{c1}[i_2][4i_3+i_5][4i_4+i_6]} \cdot \frac{\partial PreA_{c1}[i_2][4i_3+i_5][4i_4+i_6]}{\partial Bias_{c1}[i_2]} \\\ &= \sum_{i_1=0}^{9}\sum_{i_3=0}^{5}\sum_{i_4=0}^{5}\sum_{i_5=0}^{3}\sum_{i_6=0}^{3} err[i_1] \cdot 1 \cdot Out_{fc}[i_1](1-Out_{fc}[i_1])\\\ &\cdot Weight_{fc}[i_1][i_2][i_3][i_4] \cdot Out_{c2}[i_2][i_3][i_4](1-Out_{c2}[i_2][i_3][i_4]) \cdot Weight_{c2}[i_5][i_6]\\\ &\cdot Out_{c1}[i_2][4i_3+i_5][4i_4+i_6](1-Out_{c1}[i_2][4i_3+i_5][4i_4+i_6]) \cdot 1 \end{split}$$

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published