Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LoRA] Change lora_tokenizers capacity #10796

Merged
merged 3 commits into from
Dec 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions tests/lora/test_tokenizer_group.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ async def test_tokenizer_group_lora(sql_lora_files, tokenizer_group_type):
tokenizer_id="gpt2",
enable_lora=True,
max_num_seqs=1,
max_loras=1,
max_input_length=None,
)
lora_request = LoRARequest("1", 1, sql_lora_files)
Expand Down Expand Up @@ -53,3 +54,22 @@ def test_get_lora_tokenizer(sql_lora_files, tmp_path):
lora_request = LoRARequest("1", 1, str(tmp_path))
tokenizer = get_lora_tokenizer(lora_request)
assert not tokenizer


@pytest.mark.parametrize("enable_lora", [True, False])
@pytest.mark.parametrize("max_num_seqs", [1, 2])
@pytest.mark.parametrize("max_loras", [1, 2])
def test_lora_tokenizers(enable_lora, max_num_seqs, max_loras):
tokenizer_group = get_tokenizer_group(
get_tokenizer_pool_config(None),
tokenizer_id="gpt2",
enable_lora=enable_lora,
max_num_seqs=max_num_seqs,
max_loras=max_loras,
max_input_length=None,
)
if enable_lora:
assert tokenizer_group.lora_tokenizers.capacity == max(
max_num_seqs, max_loras)
else:
assert tokenizer_group.lora_tokenizers.capacity == 0
2 changes: 1 addition & 1 deletion vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -619,7 +619,7 @@ def _init_tokenizer(self) -> BaseTokenizerGroup:
model_config=self.model_config,
scheduler_config=self.scheduler_config,
parallel_config=self.parallel_config,
enable_lora=bool(self.lora_config))
lora_config=self.lora_config)

def _verify_args(self) -> None:
self.model_config.verify_with_parallel_config(self.parallel_config)
Expand Down
3 changes: 1 addition & 2 deletions vllm/engine/multiprocessing/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,8 +93,7 @@ def __init__(self, ipc_path: str, engine_config: VllmConfig,
model_config=self.model_config,
scheduler_config=engine_config.scheduler_config,
parallel_config=engine_config.parallel_config,
enable_lora=bool(engine_config.lora_config),
)
lora_config=engine_config.lora_config)
self.input_preprocessor = InputPreprocessor(self.model_config,
self.tokenizer)

Expand Down
9 changes: 5 additions & 4 deletions vllm/transformers_utils/tokenizer_group/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from typing import Optional, Type

from vllm.config import (ModelConfig, ParallelConfig, SchedulerConfig,
TokenizerPoolConfig)
from vllm.config import (LoRAConfig, ModelConfig, ParallelConfig,
SchedulerConfig, TokenizerPoolConfig)
from vllm.executor.ray_utils import ray

from .base_tokenizer_group import AnyTokenizer, BaseTokenizerGroup
Expand All @@ -16,10 +16,11 @@
def init_tokenizer_from_configs(model_config: ModelConfig,
scheduler_config: SchedulerConfig,
parallel_config: ParallelConfig,
enable_lora: bool):
lora_config: LoRAConfig):
init_kwargs = dict(tokenizer_id=model_config.tokenizer,
enable_lora=enable_lora,
enable_lora=bool(lora_config),
max_num_seqs=scheduler_config.max_num_seqs,
max_loras=lora_config.max_loras if lora_config else 0,
max_input_length=None,
tokenizer_mode=model_config.tokenizer_mode,
trust_remote_code=model_config.trust_remote_code,
Expand Down
3 changes: 2 additions & 1 deletion vllm/transformers_utils/tokenizer_group/tokenizer_group.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,9 @@ def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int,
self.enable_lora = enable_lora
self.max_input_length = max_input_length
self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config)
max_loras = tokenizer_config.get("max_loras", 0)
self.lora_tokenizers = LRUCache[AnyTokenizer](
capacity=max_num_seqs if enable_lora else 0)
capacity=max(max_loras, max_num_seqs) if enable_lora else 0)
jeejeelee marked this conversation as resolved.
Show resolved Hide resolved

@classmethod
def from_config(cls, tokenizer_pool_config: Optional[TokenizerPoolConfig],
Expand Down
2 changes: 1 addition & 1 deletion vllm/v1/engine/async_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def __init__(
model_config=vllm_config.model_config,
scheduler_config=vllm_config.scheduler_config,
parallel_config=vllm_config.parallel_config,
enable_lora=bool(vllm_config.lora_config))
lora_config=vllm_config.lora_config)
self.tokenizer.ping()

# Request streams (map of request_id -> AsyncStream).
Expand Down
2 changes: 1 addition & 1 deletion vllm/v1/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def __init__(
model_config=vllm_config.model_config,
scheduler_config=vllm_config.scheduler_config,
parallel_config=vllm_config.parallel_config,
enable_lora=bool(vllm_config.lora_config))
lora_config=vllm_config.lora_config)
self.tokenizer.ping()

# Processor (convert Inputs --> EngineCoreRequests)
Expand Down
Loading