Skip to content

Commit

Permalink
Squash
Browse files Browse the repository at this point in the history
  • Loading branch information
mzusman committed Nov 3, 2024
1 parent 57aba8f commit 5c3b06f
Show file tree
Hide file tree
Showing 702 changed files with 45,666 additions and 20,211 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8 -b "auto" -l 1000 -f 5 -t 1
model_name: "neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.356
- name: "exact_match,flexible-extract"
value: 0.358
limit: 1000
num_fewshot: 5
2 changes: 1 addition & 1 deletion .buildkite/lm-eval-harness/configs/models-small.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3.2-1B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Expand Down
2 changes: 1 addition & 1 deletion .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@9516087b81a61d0e220b22cc1b75be76de23bc10
# pip install lm-eval==0.4.4

usage() {
echo``
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.3
# pip install lm-eval==0.4.4

usage() {
echo``
Expand Down
28 changes: 28 additions & 0 deletions .buildkite/nightly-benchmarks/nightly-annotation.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@

## Description

This file contains the downloading link for benchmarking results.

- [benchmarking pipeline](artifact://nightly-pipeline.yaml)
- [benchmarking results](artifact://results.zip)
- [benchmarking code](artifact://nightly-benchmarks.zip)

Please download the visualization scripts in the post


## Results reproduction

- Find the docker we use in `benchmarking pipeline`
- Deploy the docker, and inside the docker:
- Download `nightly-benchmarks.zip`.
- In the same folder, run the following code
```
export HF_TOKEN=<your HF token>
apt update
apt install -y git
unzip nightly-benchmarks.zip
VLLM_SOURCE_CODE_LOC=./ bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
```

And the results will be inside `./benchmarks/results`.

78 changes: 36 additions & 42 deletions .buildkite/nightly-benchmarks/nightly-descriptions.md
Original file line number Diff line number Diff line change
@@ -1,45 +1,39 @@

# Nightly benchmark

The main goal of this benchmarking is two-fold:
- Performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and tgi) leads in performance in what workload.
- Reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions in [reproduce.md]().


## Docker images

We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following docker images:
- vllm/vllm-openai:v0.5.0.post1
- nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
- openmmlab/lmdeploy:v0.5.0
- ghcr.io/huggingface/text-generation-inference:2.1

<!-- Please check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/nightly-pipeline.yaml">nightly-pipeline.yaml</a> artifact for more details on how we deploy the docker images. -->


## Hardware

One AWS node with 8x NVIDIA A100 GPUs.


## Workload description

We benchmark vllm, tensorrt-llm, lmdeploy and tgi using the following workload:

- Input length: randomly sample 500 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 500 prompts.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Average QPS (query per second): 4 for the small model (llama-3 8B) and 2 for other two models. For each QPS, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).

<!-- Check <a href="artifact://workspace/build/buildkite/vllm/performance-benchmark/.buildkite/nightly-benchmarks/tests/nightly-tests.json">nightly-tests.json</a> artifact for more details. -->

## Plots

In the following plots, the dot shows the mean and the error bar shows the standard error of the mean. Value 0 means that the corresponding benchmark crashed.

<img src="artifact://nightly_results.png" alt="Benchmarking results" height=250 >

## Results

{nightly_results_benchmarking_table}
This benchmark aims to:
- Provide performance clarity: Provide clarity on which one (vllm, tensorrt-llm, lmdeploy and SGLang) leads in performance in what workload.
- Be reproducible: one can run the exact same set of benchmarking commands inside the exact same docker by following reproducing instructions.

Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.

Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)


## Setup

- Docker images:
- vLLM: `vllm/vllm-openai:v0.6.2`
- SGLang: `lmsysorg/sglang:v0.3.2-cu121`
- LMDeploy: `openmmlab/lmdeploy:v0.6.1-cu12`
- TensorRT-LLM: `nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3`
- *NOTE: we uses r24.07 as the current implementation only works for this version. We are going to bump this up.*
- Check [nightly-pipeline.yaml](nightly-pipeline.yaml) for the concrete docker images, specs and commands we use for the benchmark.
- Hardware
- 8x Nvidia A100 GPUs
- Workload:
- Dataset
- ShareGPT dataset
- Prefill-heavy dataset (in average 462 input tokens, 16 tokens as output)
- Decode-heavy dataset (in average 462 input tokens, 256 output tokens)
- Check [nightly-tests.json](tests/nightly-tests.json) for the concrete configuration of datasets we use.
- Models: llama-3 8B, llama-3 70B.
- We do not use llama 3.1 as it is incompatible with trt-llm r24.07. ([issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105)).
- Average QPS (query per second): 2, 4, 8, 16, 32 and inf.
- Queries are randomly sampled, and arrival patterns are determined via Poisson process, but all with fixed random seed.
- Evaluation metrics: Throughput (higher the better), TTFT (time to the first token, lower the better), ITL (inter-token latency, lower the better).

# Known issues

- TRT-LLM crashes with Llama 3.1 8B [issue](https://github.com/NVIDIA/TensorRT-LLM/issues/2105).
- TGI does not support `ignore-eos` flag.
98 changes: 87 additions & 11 deletions .buildkite/nightly-benchmarks/nightly-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ common_pod_spec: &common_pod_spec

common_container_settings: &common_container_settings
command:
- bash .buildkite/nightly-benchmarks/run-nightly-suite.sh
- bash .buildkite/nightly-benchmarks/scripts/run-nightly-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
Expand All @@ -37,7 +37,10 @@ common_container_settings: &common_container_settings

steps:
- block: ":rocket: Ready for comparing vllm against alternatives? This will take 4 hours."
- label: "A100 trt benchmark"



- label: "A100 vllm step 10"
priority: 100
agents:
queue: A100
Expand All @@ -46,7 +49,21 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: nvcr.io/nvidia/tritonserver:24.04-trtllm-python-py3
- image: vllm/vllm-openai:v0.6.2
<<: *common_container_settings



- label: "A100 sglang benchmark"
priority: 100
agents:
queue: A100
plugins:
- kubernetes:
podSpec:
<<: *common_pod_spec
containers:
- image: lmsysorg/sglang:v0.3.2-cu121
<<: *common_container_settings

- label: "A100 lmdeploy benchmark"
Expand All @@ -58,11 +75,13 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: openmmlab/lmdeploy:v0.5.0
- image: openmmlab/lmdeploy:v0.6.1-cu12
<<: *common_container_settings


- label: "A100 vllm benchmark"



- label: "A100 trt llama-8B"
priority: 100
agents:
queue: A100
Expand All @@ -71,10 +90,25 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: vllm/vllm-openai:latest
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama8B"

- label: "A100 tgi benchmark"

- label: "A100 trt llama-70B"
priority: 100
agents:
queue: A100
Expand All @@ -83,12 +117,54 @@ steps:
podSpec:
<<: *common_pod_spec
containers:
- image: ghcr.io/huggingface/text-generation-inference:2.1
- image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
<<: *common_container_settings
env:
- name: VLLM_USAGE_SOURCE
value: ci-test
- name: HF_HOME
value: /root/.cache/huggingface
- name: VLLM_SOURCE_CODE_LOC
value: /workspace/build/buildkite/vllm/performance-benchmark
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
- name: TEST_SELECTOR
value: "llama70B"


# FIXME(Kuntai): uncomment this after NVIDIA gives us their test docker image
# - label: "A100 trt benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
# <<: *common_container_settings


# FIXME(Kuntai): uncomment this after TGI supports `--ignore-eos`.
# - label: "A100 tgi benchmark"
# priority: 100
# agents:
# queue: A100
# plugins:
# - kubernetes:
# podSpec:
# <<: *common_pod_spec
# containers:
# - image: ghcr.io/huggingface/text-generation-inference:2.2.0
# <<: *common_container_settings

- wait

- label: "Plot"
- label: "Collect the results"
priority: 100
agents:
queue: A100
Expand Down Expand Up @@ -117,4 +193,4 @@ steps:
name: hf-token-secret
key: token

- wait
- block: ":rocket: check the results!"
76 changes: 0 additions & 76 deletions .buildkite/nightly-benchmarks/run-nightly-suite.sh

This file was deleted.

Loading

0 comments on commit 5c3b06f

Please sign in to comment.