forked from TUMFTM/global_racetrajectory_optimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_gen_frictionmap.py
183 lines (140 loc) · 8.75 KB
/
main_gen_frictionmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import math
import json
import time
from datetime import datetime
import os.path
import matplotlib.path as mplPath
from scipy.spatial import cKDTree
import frictionmap
"""
Created by:
Leonhard Hermansdorfer
Created on:
01.12.2018
Documentation:
This script generates a grid respresenting the friction map with specified cellwidth. Additionally, it fills the
corresponding cells of the friction map with a default mue value.
"""
# ----------------------------------------------------------------------------------------------------------------------
# USER INPUT -----------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# track_name: track name for which a friction map should be generated (csv must be in the inputs folder).
# initial_mue: mue value which should be used to initialize the friction map (all cells contain this value).
# cellwidth_m: width of the grid cells of the friction map (cells are quadratic).
# inside_trackbound: specifies which trackbound is on the inside of the racetrack ('right' or 'left'). This is
# only necessary for circuits (closed racetracks).
# bool_show_plots: boolean which enables plotting of the reference line, the friction map and the corresponding
# mue values
track_name = "modena_2019"
initial_mue = 0.8
cellwidth_m = 2.0
inside_trackbound = 'right'
bool_show_plots = True
# ----------------------------------------------------------------------------------------------------------------------
# INITIALIZATION -------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# determine names of output files
datetime_save = datetime.now().strftime("%Y%m%d_%H%M%S")
filename_tpamap = datetime_save + '_' + track_name + '_tpamap.csv'
filename_tpadata = datetime_save + '_' + track_name + '_tpadata.json'
# set paths
path2module = os.path.dirname(os.path.abspath(__file__))
path2reftrack_file = os.path.join(path2module, 'inputs', 'tracks', track_name + '.csv')
path2tpamap_file = os.path.join(path2module, 'inputs', 'frictionmaps', filename_tpamap)
path2tpadata_file = os.path.join(path2module, 'inputs', 'frictionmaps', filename_tpadata)
# ----------------------------------------------------------------------------------------------------------------------
# CALCULATE REFERENCE LINE ---------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# read reference track file
reftrack = frictionmap.src.reftrack_functions.load_reftrack(path2track=path2reftrack_file)
# check whether reference line is closed (is the race track a circuit or not)
bool_isclosed_refline = frictionmap.src.reftrack_functions.check_isclosed_refline(refline=reftrack[:, :2])
# calculate coordinates of the track boundaries
reftrackbound_right, reftrackbound_left = frictionmap.src.reftrack_functions.calc_trackboundaries(reftrack=reftrack)
# ----------------------------------------------------------------------------------------------------------------------
# SAMPLE COORDINATES FOR FRICTION MAP ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
timer_start = time.perf_counter()
# match left/right track boundary to "inside" and "outside" (only necessary for circuits)
if bool_isclosed_refline and inside_trackbound == 'right':
trackbound_inside = reftrackbound_right
trackbound_outside = reftrackbound_left
sign_trackbound = -1
else:
trackbound_inside = reftrackbound_left
trackbound_outside = reftrackbound_right
sign_trackbound = 1
# set a default distance which is added / subtracted from max / min reference line coordinate to ensure that whole
# racetrack is covered during coordinate point sampling
default_delta = int(math.ceil(np.amax(reftrack[:, 2]) + np.amax(reftrack[:, 3]) + 5.0))
# calculate necessary range to cover the whole racetrack with grid xyRange = [x_min, x_max, y_min, y_max]
xyRange = [int(math.floor(np.amin(reftrack[:, 0]) - default_delta)),
int(math.ceil(np.amax(reftrack[:, 0]) + default_delta)),
int(math.floor(np.amin(reftrack[:, 1]) - default_delta)),
int(math.ceil(np.amax(reftrack[:, 1]) + default_delta))]
# set-up 2D-grid
x_grid = np.arange(xyRange[0], xyRange[1] + 0.1, cellwidth_m)
y_grid = np.arange(xyRange[2], xyRange[3] + 0.1, cellwidth_m)
# get number of coordinates for array initialization
size_array = x_grid.shape[0] * y_grid.shape[0]
coordinates = np.empty((size_array, 2))
# create coordinate array which contains all coordinate of the defined grid
i_row = 0
for x_coord in x_grid:
coordinates[i_row:i_row + y_grid.shape[0], 0] = np.full((y_grid.shape[0]), x_coord)
coordinates[i_row:i_row + y_grid.shape[0], 1] = y_grid
i_row += y_grid.shape[0]
# set maximum distance between grid cells outside the track and trackboundaries to determine all relevant grid cells
dist_to_trackbound = cellwidth_m * 1.1
# distinguish between a closed racetrack (circuit) and an "open" racetrack
if bool_isclosed_refline:
bool_isIn_rightBound = mplPath.Path(trackbound_outside).\
contains_points(coordinates, radius=(dist_to_trackbound * sign_trackbound))
bool_isIn_leftBound = mplPath.Path(trackbound_inside).\
contains_points(coordinates, radius=-(dist_to_trackbound * sign_trackbound))
bool_OnTrack = (bool_isIn_rightBound & ~bool_isIn_leftBound)
else:
trackbound = np.vstack((trackbound_inside, np.flipud(trackbound_outside)))
bool_OnTrack = mplPath.Path(trackbound).contains_points(coordinates, radius=-dist_to_trackbound)
# generate the friction map with coordinates which are within the trackboundaries or within the defined range outside
tpa_map = cKDTree(coordinates[bool_OnTrack])
print('INFO: Time elapsed for tpa_map building: {:.3f}s\nINFO: tpa_map contains {} coordinate points'.format(
(time.perf_counter() - timer_start), tpa_map.n))
# ----------------------------------------------------------------------------------------------------------------------
# SAVE FRICTION MAP ----------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
timer_start = time.perf_counter()
# create dictionary filled with default mue value (value as numpy array)
tpamap_indices = tpa_map.indices
tpa_data = dict(zip(tpamap_indices, np.full((tpamap_indices.shape[0], 1), initial_mue)))
print('INFO: Time elapsed for tpa_data dictionary building: {:.3f}s'.format(time.perf_counter() - timer_start))
# save friction map (only grid) ('*_tpamap.csv')
with open(path2tpamap_file, 'wb') as fh:
np.savetxt(fh, tpa_map.data, fmt='%0.4f', delimiter=';', header='x_m;y_m')
print('INFO: tpa_map saved successfully!')
# get tpadata as string to save as a dictionary (as .json file)
tpa_data_string = {str(k): list(v) for k, v in tpa_data.items()}
# save friction data ('*_tpadata.json')
with open(path2tpadata_file, 'w') as fh:
json.dump(tpa_data_string, fh, separators=(',', ': '))
print('INFO: tpa_data saved successfully!')
# ----------------------------------------------------------------------------------------------------------------------
# CREATE PLOTS ---------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
if bool_show_plots:
# plot reference line and normal vectors
frictionmap.src.reftrack_functions.plot_refline(reftrack=reftrack)
# plot spatial grid of friction map
frictionmap.src.plot_frictionmap_grid.\
plot_voronoi_fromVariable(tree=tpa_map,
refline=reftrack[:, :2],
trackbound_left=reftrackbound_left,
trackbound_right=reftrackbound_right)
# plot friction data of friction map
frictionmap.src.plot_frictionmap_data.\
plot_tpamap_fromVariable(tpa_map=tpa_map,
tpa_data=tpa_data,
refline=reftrack[:, :2],
trackbound_left=reftrackbound_left,
trackbound_right=reftrackbound_right)