Intel® Extension for Scikit-learn* is happy to introduce 2025.1.0 release!
🚨 What's New
- Introduced new Intel® Extension for Scikit-learn* functionality:
- Enabled accelerated Linear Regression for overdetermined systems
- Enabled hyperparameter support for Random Forest classifier inference
- Enabled serialization in
daal4py
algorithm classes
🪲 Bug Fixes
- Fixed int overflow in FTI model convertor
- Updated
BasicStatistics
andIncrementalBasicStatistics
to follow additional sklearn conventions - Fixed
n_jobs
support coverage to indirectly-supported oneDAL methods - Fixed KMeans
score
check in_onedal_*_supported
andn_jobs
support forscore
- Corrected skips in design rule checks (
test_common.py
) caused by fragilewhitelist_to_blacklist
- Fixed
test_estimators[LogisticRegression()-check_estimators_unfitted]
conformance for gpu support - Updated functional support fallback logic for a DPNP/DPCTL ndarray inputs
- Fixed an issue in aliased
_onedal_cpu_supported
and_onedal_gpu_supported
infit_check_before_support_check
- Fixed logic of k-NN algos
kneighbors()
call whenalgorithm='brute'
and fit with GPU
🔨 Library Engineering
- Added Python 3.13 support for Intel® Extension for Scikit-learn* packages
- Added Sklearn 1.6 support for Intel® Extension for Scikit-learn* packages
Acknowledgements
Thanks to everyone who helped us make 2025.1.0 release possible!
@Alexsandruss, @Alexandr-Solovev, @Vika-F, @david-cortes-intel, @icfaust, @napetrov, @maria-Petrova, @homksei, @ahuber21, @ethanglaser, @samir-nasibli, @olegkkruglov, @razdoburdin, @avolkov-intel, @md-shafiul-alam
Full Changelog: 2025.0.0...2025.1.0