Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhance testing for pending request count (#6532) #6545

Merged
merged 1 commit into from
Nov 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 46 additions & 8 deletions qa/L0_metrics/metrics_queue_size_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,14 +83,24 @@ def setUp(self):
url=self.server_url, concurrency=self.concurrency
)

def _validate_model_config(self, model_name):
# Test specific configurations
self.max_queue_size = 0

def _validate_model_config(self, model_name, max_queue_size=0):
config = self.client.get_model_config(model_name)
print(config)
params = config.get("parameters", {})
delay_ms = int(params.get("execute_delay_ms", {}).get("string_value"))
max_batch_size = config.get("max_batch_size")
self.assertEqual(delay_ms, self.delay_ms)
self.assertEqual(max_batch_size, self.max_batch_size)

dynamic_batching = config.get("dynamic_batching", {})
default_queue_policy = dynamic_batching.get("default_queue_policy", {})
self.max_queue_size = default_queue_policy.get("max_queue_size", 0)

self.assertEqual(self.max_queue_size, max_queue_size)

return config

def _get_metrics(self):
Expand Down Expand Up @@ -148,8 +158,10 @@ def _send_async_requests_sequence(self, num_seq_slots, model_name, inputs, futur
)
num_sent += 1

def _test_helper(self, model_name, batch_size, send_requests_func):
self._validate_model_config(model_name)
def _test_helper(
self, model_name, batch_size, send_requests_func, max_queue_size=0
):
self._validate_model_config(model_name, max_queue_size=max_queue_size)

queue_size = QUEUE_METRIC_TEMPLATE.format(model_name=model_name)
infer_count = INFER_METRIC_TEMPLATE.format(model_name=model_name)
Expand All @@ -162,9 +174,16 @@ def _test_helper(self, model_name, batch_size, send_requests_func):
# Give Triton a second to load all requests into queues
time.sleep(1)

starting_queue_size = self.num_requests - batch_size
# Start from (num_requests-batch_size) because 1 batch should be executing,
# and the rest of the requests should be queued.
# If max_queue_size is specified then the queued requests would be capped
# at max_queue_size.
if max_queue_size != 0:
self._assert_metric_equals(queue_size, max_queue_size)
starting_queue_size = max_queue_size
else:
starting_queue_size = self.num_requests - batch_size

for expected_queue_size in range(starting_queue_size, 0, -1 * batch_size):
self._assert_metric_equals(queue_size, expected_queue_size)
time.sleep(self.delay_sec)
Expand All @@ -174,13 +193,21 @@ def _test_helper(self, model_name, batch_size, send_requests_func):
time.sleep(self.delay_sec)

# All requests should've been executed without any batching
self._assert_metric_equals(infer_count, self.num_requests)
expected_exec_count = math.ceil(self.num_requests / batch_size)
expected_infer_count = starting_queue_size + batch_size
self._assert_metric_equals(infer_count, expected_infer_count)
expected_exec_count = math.ceil(expected_infer_count / batch_size)
self._assert_metric_equals(exec_count, expected_exec_count)

# Verify no inference exceptions were raised
failed_count = 0
for future in futures:
future.get_result()
try:
future.get_result()
except Exception as e:
failed_count = failed_count + 1

self.assertEqual(
failed_count, self.num_requests - batch_size - starting_queue_size
)

def test_default_scheduler(self):
model_name = "default"
Expand All @@ -194,6 +221,17 @@ def test_dynamic_batch_scheduler(self):
batch_size = self.max_batch_size
self._test_helper(model_name, batch_size, self._send_async_requests)

def test_fail_max_queue_size(self):
model_name = "max_queue_size"
# This test checks whether metrics are properly accounts for requests
# that fail to enqueue on the server. The test sets the max_queue_size
# and any additional requests beyond the specified queue size should fail
# instead of waiting for execution.
batch_size = self.max_batch_size
self._test_helper(
model_name, batch_size, self._send_async_requests, max_queue_size=4
)

def test_sequence_batch_scheduler_direct(self):
model_name = "sequence_direct"
# With sufficient queue delay and minimum_slot_utilization set, we
Expand Down
6 changes: 5 additions & 1 deletion qa/L0_metrics/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -325,6 +325,10 @@ DYNAMIC_MODEL="${MODELDIR}/dynamic"
cp -r "${DEFAULT_MODEL}" "${DYNAMIC_MODEL}"
echo -e "\ndynamic_batching { max_queue_delay_microseconds: ${MAX_QUEUE_DELAY_US} }\n" >> "${DYNAMIC_MODEL}/config.pbtxt"

MAX_QUEUE_SIZE_MODEL="${MODELDIR}/max_queue_size"
cp -r "${DEFAULT_MODEL}" "${MAX_QUEUE_SIZE_MODEL}"
echo -e "\ndynamic_batching { max_queue_delay_microseconds: ${MAX_QUEUE_DELAY_US} default_queue_policy { max_queue_size: 4 } }\n" >> "${MAX_QUEUE_SIZE_MODEL}/config.pbtxt"

SEQUENCE_DIRECT_MODEL="${MODELDIR}/sequence_direct"
cp -r "${DEFAULT_MODEL}" "${SEQUENCE_DIRECT_MODEL}"
echo -e "\nsequence_batching { direct { max_queue_delay_microseconds: ${MAX_QUEUE_DELAY_US}, minimum_slot_utilization: 1.0 } }\n" >> "${SEQUENCE_DIRECT_MODEL}/config.pbtxt"
Expand All @@ -347,7 +351,7 @@ run_and_check_server
python3 ${PYTHON_TEST} 2>&1 | tee ${CLIENT_LOG}
kill $SERVER_PID
wait $SERVER_PID
expected_tests=5
expected_tests=6
check_unit_test "${expected_tests}"

if [ $RET -eq 0 ]; then
Expand Down
Loading