-
Notifications
You must be signed in to change notification settings - Fork 173
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #39 from tobybreckon/tflite
pull tflite conversion and validation
- Loading branch information
Showing
9 changed files
with
471 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
################################################################################ | ||
|
||
# Example : perform validation of FireNet models in TFLearn, PB and TFLite formats | ||
|
||
# Copyright (c) 2019 - Toby Breckon, Durham University, UK | ||
|
||
# License : https://github.com/tobybreckon/fire-detection-cnn/blob/master/LICENSE | ||
|
||
################################################################################ | ||
|
||
import cv2 | ||
import os | ||
import sys | ||
import math | ||
|
||
################################################################################ | ||
|
||
import tflearn | ||
from tflearn.layers.core import * | ||
from tflearn.layers.conv import * | ||
from tflearn.layers.normalization import * | ||
from tflearn.layers.estimator import regression | ||
|
||
################################################################################ | ||
|
||
VALIDATE_TO_PRECISION_N = 5 | ||
|
||
################################################################################ | ||
|
||
sys.path.append('..') | ||
from firenet import construct_firenet | ||
|
||
################################################################################ | ||
|
||
# tflearn - load model | ||
|
||
print("Load tflearn model from: ../models/FireNet ...", end = '') | ||
model_tflearn = construct_firenet (224, 224, training=False) | ||
model_tflearn.load(os.path.join("../models/FireNet", "firenet"),weights_only=True) | ||
print("OK") | ||
|
||
################################################################################ | ||
|
||
# tf protocol buffer - load model (into opencv) | ||
|
||
print("Load protocolbuf (pb) model from: firenet.pb ...", end = '') | ||
tensorflow_pb_model = cv2.dnn.readNetFromTensorflow('firenet.pb') | ||
print("OK") | ||
|
||
################################################################################ | ||
|
||
# tflite - load model | ||
|
||
print("Load tflite model from: firenet.tflite ...", end = '') | ||
tflife_model = tf.lite.Interpreter(model_path="firenet.tflite") | ||
tflife_model.allocate_tensors() | ||
print("OK") | ||
|
||
# Get input and output tensors. | ||
tflife_input_details = tflife_model.get_input_details() | ||
tflife_output_details = tflife_model.get_output_details() | ||
|
||
################################################################################ | ||
|
||
# load video file | ||
|
||
video = cv2.VideoCapture("../models/test.mp4") | ||
print("Load test video from ../models/test.mp4 ...") | ||
|
||
# get video properties | ||
|
||
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
|
||
frame_counter = 0 | ||
fail_counter = 0 | ||
|
||
while (True): | ||
|
||
# get video frame from file, handle end of file | ||
|
||
ret, frame = video.read() | ||
if not ret: | ||
print("... end of video file reached") | ||
break | ||
|
||
print("frame: " + str(frame_counter), end = '') | ||
frame_counter = frame_counter + 1 | ||
|
||
# re-size image to network input size and perform prediction | ||
|
||
# input to networks is: 224x224x3 colour image with channel ordering as {B,G,R} | ||
# as is the opencv norm, not {R,G,B} and pixel value range 0->255 for each channel | ||
|
||
small_frame = cv2.resize(frame, (224, 224), cv2.INTER_AREA) | ||
|
||
############################################################################ | ||
|
||
np.set_printoptions(precision=6) | ||
|
||
# perform predictiion with tflearn model | ||
|
||
output_tflearn = model_tflearn.predict([small_frame]) | ||
print("\t: TFLearn (original): ", end = '') | ||
print(output_tflearn, end = '') | ||
|
||
# perform prediction with protocolbuf model via opencv | ||
|
||
tensorflow_pb_model.setInput(cv2.dnn.blobFromImage(small_frame, size=(224, 224), swapRB=False, crop=False)) | ||
output_tensorflow_pb = tensorflow_pb_model.forward() | ||
|
||
print("\t: Tensorflow .pb (via opencv): ", end = '') | ||
print(output_tensorflow_pb, end = '') | ||
|
||
# perform prediction with tflite model via TensorFlow | ||
|
||
tflife_input_data = np.reshape(np.float32(small_frame), (1, 224, 224, 3)) | ||
tflife_model.set_tensor(tflife_input_details[0]['index'], tflife_input_data) | ||
|
||
tflife_model.invoke() | ||
|
||
output_tflite = tflife_model.get_tensor(tflife_output_details[0]['index']) | ||
print("\t: TFLite (via tensorflow): ", end = '') | ||
print(output_tflite, end = '') | ||
|
||
try: | ||
np.testing.assert_almost_equal(output_tflearn, output_tensorflow_pb, VALIDATE_TO_PRECISION_N) | ||
np.testing.assert_almost_equal(output_tflearn, output_tflite, 3) | ||
print(": all equal test - PASS") | ||
except AssertionError: | ||
print(" all equal test - FAIL") | ||
fail_counter = fail_counter +1 | ||
|
||
################################################################################ | ||
print("*** FINAL cross-model validation FAILS (for precision of " + str(VALIDATE_TO_PRECISION_N) + ") = " + str(fail_counter)) | ||
################################################################################ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.