Skip to content

Commit

Permalink
slight update to nsynth autoencoder
Browse files Browse the repository at this point in the history
  • Loading branch information
timsainb committed May 14, 2019
1 parent 4186131 commit 37d653e
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 7 deletions.
14 changes: 11 additions & 3 deletions 8.0-NSYNTH-iterator.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -546,7 +546,7 @@
},
"source": [
"### test how fast we can iterate over the dataset\n",
"This value is around 15 iterations/second on my computer locally with 10 parallel"
"This value is around 15 iterations/second on my computer locally with 10 parallel threads. It might be slower on colab or other free resources. "
]
},
{
Expand All @@ -565,10 +565,11 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 21,
"metadata": {
"ExecuteTime": {
"start_time": "2019-05-14T04:28:46.836Z"
"end_time": "2019-05-14T04:29:59.782683Z",
"start_time": "2019-05-14T04:28:46.857524Z"
}
},
"outputs": [
Expand All @@ -585,6 +586,13 @@
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
Expand Down
8 changes: 4 additions & 4 deletions 9.0-seq2seq-NSYNTH.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -851,14 +851,14 @@
"execution_count": null,
"metadata": {
"ExecuteTime": {
"start_time": "2019-05-14T04:30:02.723Z"
"start_time": "2019-05-14T04:35:59.784Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fdf9e13e24d0480ba691e07c577ff0e5",
"model_id": "356f8c66ed5a436b850e1664c8e81a32",
"version_major": 2,
"version_minor": 0
},
Expand All @@ -881,9 +881,9 @@
" # test on holdout\n",
" loss = []\n",
" for batch, test_x in tqdm(\n",
" zip(range(n_batches_test), dset.test_dataset), total=n_batches_test\n",
" zip(range(n_batches_test), dset.dataset_test), total=n_batches_test\n",
" ):\n",
" loss.append(model.compute_loss(train_x))\n",
" loss.append(model.compute_loss(test_x['spectrogram']))\n",
" losses.loc[len(losses)] = np.mean(loss, axis=0)\n",
" # plot results\n",
" display.clear_output()\n",
Expand Down

0 comments on commit 37d653e

Please sign in to comment.