Skip to content

Commit

Permalink
ready for CRAN, let Amith look once (#32)
Browse files Browse the repository at this point in the history
  • Loading branch information
talegari authored Jun 27, 2024
1 parent 97788de commit 2035773
Show file tree
Hide file tree
Showing 96 changed files with 7,968 additions and 2,037 deletions.
Binary file modified .DS_Store
Binary file not shown.
1 change: 1 addition & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,4 @@
docs
^README\.Rmd$
^\.github$
^vignettes/articles$
7 changes: 3 additions & 4 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: tidyrules
Type: Package
Title: Utilities to Retrieve Rulelists from Model Fits, Filter, Prune, Reorder and Predict on unseen data
Version: 0.2.6
Version: 0.2.7
Authors@R: c(
person("Srikanth", "Komala Sheshachala", email = "[email protected]", role = c("aut", "cre")),
person("Amith Kumar", "Ullur Raghavendra", email = "[email protected]", role = c("aut"))
Expand All @@ -24,6 +24,7 @@ Imports:
glue (>= 1.7.0),
pheatmap (>= 1.0.12),
proxy (>= 0.4.27),
tibble (>= 3.2.1),
Suggests:
AmesHousing (>= 0.0.3),
dplyr (>= 0.8),
Expand All @@ -35,16 +36,14 @@ Suggests:
testthat (>= 2.0.1),
MASS (>= 7.3.50),
mlbench (>= 2.1.1),
knitr (>= 1.23),
rmarkdown (>= 1.13),
palmerpenguins (>= 0.1.1),
Description: Provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and rulelset based on dataframe.
URL: https://github.com/talegari/tidyrules
URL: https://github.com/talegari/tidyrules, https://talegari.github.io/tidyrules/
BugReports: https://github.com/talegari/tidyrules/issues
License: GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.1
VignetteBuilder: knitr
Roxygen: list(markdown = TRUE)

2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ importFrom(magrittr,"%>%")
importFrom(rlang,"%||%")
importFrom(stats,IQR)
importFrom(stats,predict)
importFrom(stats,reorder)
importFrom(stats,runif)
importFrom(stats,weighted.mean)
importFrom(tidytable,across)
Expand All @@ -64,6 +65,7 @@ importFrom(tidytable,select)
importFrom(tidytable,slice)
importFrom(tidytable,summarise)
importFrom(tidytable,unnest)
importFrom(utils,capture.output)
importFrom(utils,data)
importFrom(utils,head)
importFrom(utils,tail)
7 changes: 7 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
# tidyrules 0.2.7

- Major rewrite of tidyrules
- rulelist class introduced with many methods, mainly `predict`
- breaking change: `tidyRules` function no longer exists!
- Support added to `party` models

# tidyrules 0.1.5

- Maintenance release (replace package rsample with modeldata)
Expand Down
44 changes: 0 additions & 44 deletions R/dev_mindmap.R

This file was deleted.

1 change: 1 addition & 0 deletions R/package.R
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
#' @importFrom stats runif
#' @importFrom utils head
#' @importFrom utils tail
#' @importFrom utils capture.output
#'
"_PACKAGE"

Expand Down
99 changes: 70 additions & 29 deletions R/rulelist.R
Original file line number Diff line number Diff line change
Expand Up @@ -343,8 +343,12 @@ set_validation_data = function(x, validation_data, y_name, weight = 1){

res = rlang::duplicate(x)

checkmate::assert_data_frame(validation_data)
attr(res, "validation_data") = data.table::as.data.table(validation_data)
checkmate::assert_data_frame(validation_data, null.ok = TRUE)
if (!is.null(validation_data)) {
attr(res, "validation_data") =
data.table::as.data.table(validation_data)
}

attr(res, "y_name") = y_name
attr(res, "weight") = weight

Expand Down Expand Up @@ -376,48 +380,86 @@ print.rulelist = function(x, banner = TRUE, ...){
model_type = attr(rulelist, "model_type")
validation_data = attr(rulelist, "validation_data")

text = character(0)
if (banner) {
cli::cli_rule(left = "Rulelist")
cli::cli_text("")
text = c(text, "---- Rulelist --------------------------------")
}

if (is.null(keys)) {
cli::cli_alert_info("{.emph Keys}: {.strong NULL}")
text = c(text,
paste(cli::symbol$play,
"Keys: NULL"
)
)
} else {
cli::cli_alert_info("{.emph keys}: {.val {keys}}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Keys: {keys}")
)
)
n_combo = nrow(distinct(select(x, all_of(keys))))
cli::cli_alert_info("{.emph Number of distinct keys}: {.val {n_combo}}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Number of distinct keys: {n_combo}")
)
)
}

cli::cli_alert_info("{.emph Number of rules}: {.val {nrow(x)}}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Number of rules: {nrow(x)}")
)
)

if (is.null(model_type)){
cli::cli_alert_info("{.emph Model type}: {.strong NULL}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Model Type: NULL")
)
)
} else {
cli::cli_alert_info("{.emph Model type}: {.val {model_type}}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Model type: {model_type}")
)
)
}

if (is.null(estimation_type)){
cli::cli_alert_info("{.emph Estimation type}: {.strong NULL}")
if (is.null(estimation_type)) {
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Estimation type: NULL")
)
)
} else {
cli::cli_alert_info("{.emph Estimation type}: {.val {estimation_type}}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Estimation type: {estimation_type}")
)
)
}

if (is.null(validation_data)){
cli::cli_alert_warning("{.emph Is validation data set}: {.strong FALSE}")
if (is.null(validation_data)) {
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Is validation data set: FALSE")
)
)
} else {
cli::cli_alert_success("{.emph Is validation data set}: {.strong TRUE}")
text = c(text,
paste(cli::symbol$play,
stringr::str_glue("Is validation data set: TRUE")
)
)
}

cli::cli_text("")

class(rulelist) = setdiff(class(rulelist), "rulelist")
# now 'rulelist' is a dataframe and not a 'rulelist'
print(rulelist, ...)
print_output = capture.output(print(tibble::as_tibble(x), ...), file = NULL)
text = c(text, "\n", utils::tail(print_output, -1))

if (banner) {
cli::cli_rule()
text = c(text, "----------------------------------------------")
}
cat(paste(text, collapse = "\n"))

return(invisible(x))
}
Expand Down Expand Up @@ -592,7 +634,7 @@ predict_all_rulelist = function(rulelist, new_data){
res =
rulelist %>%
as.data.frame() %>%
nest(data__ = tidytable::everything(), .by = keys) %>%
nest(data__ = tidytable::everything(), .by = all_of(keys)) %>%
mutate(rn_df__ =
purrr::map(data__,
~ predict_all_nokeys_rulelist(.x, new_data)
Expand All @@ -603,7 +645,7 @@ predict_all_rulelist = function(rulelist, new_data){
drop_na(row_nbr) %>%
select(all_of(c("row_nbr", keys, "rule_nbr"))) %>%
arrange(!!!rlang::syms(c("row_nbr", keys, "rule_nbr"))) %>%
nest(.by = c("row_nbr", keys), .key = "rule_nbr") %>%
nest(.by = all_of(c("row_nbr", keys)), .key = "rule_nbr") %>%
mutate(rule_nbr = purrr::map(rule_nbr, ~ .x[[1]]))
}

Expand Down Expand Up @@ -685,7 +727,7 @@ predict_rulelist = function(rulelist, new_data){
res =
rulelist %>%
as.data.frame() %>%
nest(data__ = tidytable::everything(), .by = keys) %>%
nest(data__ = tidytable::everything(), .by = all_of(keys)) %>%
mutate(rn_df__ =
purrr::map(data__, ~ predict_nokeys_rulelist(.x, new_data))
) %>%
Expand Down Expand Up @@ -1759,10 +1801,9 @@ plot.prune_rulelist = function(x, ...) {
#' @seealso [rulelist], [tidy], [augment][augment.rulelist],
#' [predict][predict.rulelist], [calculate][calculate.rulelist],
#' [prune][prune.rulelist], [reorder][reorder.rulelist]
#' @importFrom stats reorder
#' @export
reorder = function(x, ...){
UseMethod("reorder", x)
}
stats::reorder

#' @name reorder.rulelist
#' @title Reorder the rules/rows of a [rulelist]
Expand Down Expand Up @@ -1891,7 +1932,7 @@ reorder.rulelist = function(x,
rule_metrics = purrr::map_dfr(splitted, wrapper_metric_fun)
ord = do.call(base::order,
c(rule_metrics,
list(decreasing = minimize)
list(decreasing = !minimize)
)
)
pos = which(ord == 1)
Expand Down
14 changes: 9 additions & 5 deletions R/ruleset.R
Original file line number Diff line number Diff line change
Expand Up @@ -53,18 +53,22 @@ print.ruleset = function(x, banner = TRUE, ...){

ruleset = rlang::duplicate(x)

text = character(0)
if (banner) {
cli::cli_rule(left = "Ruleset")
cli::cli_text("")
text = c(text, "---- Ruleset -------------------------------")
}

class(ruleset) = setdiff(class(ruleset), "ruleset")
# now 'ruleset' is a rulelist
print(ruleset, banner = FALSE, ...)
text = c(text,
capture.output(print(ruleset, banner = FALSE, ...),
file = NULL
)
)

if (banner) {
cli::cli_rule()
text = c(text, "--------------------------------------------")
}
cat(paste(text, collapse = "\n"))

return(invisible(x))
}
Expand Down
6 changes: 4 additions & 2 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -312,12 +312,14 @@ convert_rule_flavor = function(rule, flavor){
} else if (flavor == "sql"){
res =
rule %>%
stringr::str_replace_all("==", "=") %>%

stringr::str_replace_all("\\( ", "") %>%
stringr::str_replace_all(" \\)", "") %>%

stringr::str_replace_all("%in%", "IN") %>%
stringr::str_replace_all("c\\(", "[") %>%
stringr::str_replace_all("\\)", "]") %>%
stringr::str_replace_all("c\\(", "(") %>%
stringr::str_replace_all("\\)", ")") %>%

stringr::str_replace_all("&", " ) AND (") %>%

Expand Down
24 changes: 14 additions & 10 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ knitr::opts_chunk$set(
fig.path = "man/figures/README-",
out.width = "100%"
)
devtools::load_all() #todo
```
# tidyrules

Expand All @@ -20,36 +21,39 @@ knitr::opts_chunk$set(
[![R-CMD-check](https://github.com/talegari/tidyrules/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/talegari/tidyrules/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->

`tidyrules` converts textual rules from models to dataframes with parseable rules. Supported models are: `C5`, `cubist` and `rpart`.
> [tidyrules](https://cran.r-project.org/package=tidyrules) [R](https://www.r-project.org/) [package](https://cran.r-project.org/) provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and rulelset based on dataframe.
![](man/figures/tidyrules_schematic.png)

## Example
<details>
<summary>expand/collapse</summary>

```{r example}
library(tidyrules)
```

```{r basic C5 example}
model_c5 = C50::C5.0(Species ~ ., data = iris, rules = TRUE)
summary(model_c5)
```

Tidy the rules:

```{r tidyrules}
pander::pandoc.table(tidyRules(model_c5), split.tables = 120)
pander::pandoc.table(tidy(model_c5), split.tables = 120)
```
</details>

## Installation
<details>
<summary>expand/collapse</summary>

You can install the released version of tidyrules from [CRAN](https://CRAN.R-project.org) with:

``` r
```{r, eval = FALSE}
install.packages("tidyrules")
```

And the development version from [GitHub](https://github.com/) with:

``` r
```{r, eval = FALSE}
# install.packages("devtools")
devtools::install_github("talegari/tidyrules")
```
</details>

Loading

0 comments on commit 2035773

Please sign in to comment.