Skip to content

Commit

Permalink
[Misc] Add Gamma-Distribution Request Generation Support for Serving …
Browse files Browse the repository at this point in the history
…Benchmark. (vllm-project#10105)

Signed-off-by: Mozhou <[email protected]>
Co-authored-by: Roger Wang <[email protected]>
Signed-off-by: Sumit Dubey <[email protected]>
  • Loading branch information
2 people authored and sumitd2 committed Nov 14, 2024
1 parent 0976b56 commit a21bd5e
Showing 1 changed file with 52 additions and 5 deletions.
57 changes: 52 additions & 5 deletions benchmarks/benchmark_serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,17 +297,43 @@ def sample_random_requests(
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
burstiness: float = 1.0,
) -> AsyncGenerator[Tuple[str, int, int], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness.
Args:
input_requests:
A list of input requests, each represented as a tuple.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
"""
input_requests = iter(input_requests)

# Calculate scale parameter theta to maintain the desired request_rate.
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}.")
theta = 1.0 / (request_rate * burstiness)

for request in input_requests:
yield request

if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue

# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)

Expand Down Expand Up @@ -426,6 +452,7 @@ async def benchmark(
logprobs: Optional[int],
best_of: int,
request_rate: float,
burstiness: float,
disable_tqdm: bool,
profile: bool,
selected_percentile_metrics: List[str],
Expand Down Expand Up @@ -480,7 +507,13 @@ async def benchmark(
if profile_output.success:
print("Profiler started")

if burstiness == 1.0:
distribution = "Poisson process"
else:
distribution = "Gamma distribution"

print(f"Traffic request rate: {request_rate}")
print(f"Burstiness factor: {burstiness} ({distribution})")
print(f"Maximum request concurrency: {max_concurrency}")

pbar = None if disable_tqdm else tqdm(total=len(input_requests))
Expand All @@ -502,7 +535,7 @@ async def limited_request_func(request_func_input, pbar):

benchmark_start_time = time.perf_counter()
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
async for request in get_request(input_requests, request_rate, burstiness):
prompt, prompt_len, output_len, mm_content = request
request_func_input = RequestFuncInput(model=model_id,
prompt=prompt,
Expand Down Expand Up @@ -769,6 +802,7 @@ def main(args: argparse.Namespace):
logprobs=args.logprobs,
best_of=args.best_of,
request_rate=args.request_rate,
burstiness=args.burstiness,
disable_tqdm=args.disable_tqdm,
profile=args.profile,
selected_percentile_metrics=args.percentile_metrics.split(","),
Expand Down Expand Up @@ -807,6 +841,7 @@ def main(args: argparse.Namespace):
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
result_json["burstiness"] = args.burstiness
result_json["max_concurrency"] = args.max_concurrency

# Merge with benchmark result
Expand Down Expand Up @@ -922,8 +957,20 @@ def main(args: argparse.Namespace):
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
"Otherwise, we use Poisson process or gamma distribution "
"to synthesize the request arrival times.",
)
parser.add_argument(
"--burstiness",
type=float,
default=1.0,
help="Burstiness factor of the request generation. "
"Only take effect when request_rate is not inf. "
"Default value is 1, which follows Poisson process. "
"Otherwise, the request intervals follow a gamma distribution. "
"A lower burstiness value (0 < burstiness < 1) results in more "
"bursty requests. A higher burstiness value (burstiness > 1) "
"results in a more uniform arrival of requests.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
Expand Down

0 comments on commit a21bd5e

Please sign in to comment.