Skip to content
This repository has been archived by the owner on Aug 20, 2023. It is now read-only.

Benchmark and analyze functions' time execution and results over the course of development

License

Notifications You must be signed in to change notification settings

stephematician/benchmarkit

 
 

Repository files navigation

Benchmarkit

PyPI version Build Status codecov CodeFactor Dependabot Status

Benchmark and analyze functions' time execution and results over the course of development.

Features

  • No boilerplate code
  • Saves history and additional info
  • Saves function output and parameters to benchmark data science tasks
  • Easy to analyze results
  • Disables garbage collector during benchmarking

Motivation

  • I need to benchmark execution time of my function
  • I don't want to memorize and write boilerplate code
  • I want to compare results with previous runs before some changes were introduced
  • I don't want to manually write down results somewhere
  • I want to know exact commits of my previous runs months ago
  • I want to benchmark accuracy, precision, recall of my models and keep track of hyperparameters

Installation

pip install benchmarkit

Usage

Benchmark execution times

Put @benchmark decorator over function with piece of code that should be timed

from benchmarkit import benchmark, benchmark_run

N = 10000
seq_list = list(range(N))
seq_set = set(range(N))

SAVE_PATH = '/tmp/benchmark_time.jsonl'


@benchmark(num_iters=100, save_params=True, save_output=False)
def search_in_list(num_items=N):
    return num_items - 1 in seq_list


@benchmark(num_iters=100, save_params=True, save_output=False)
def search_in_set(num_items=N):
    return num_items - 1 in seq_set
  • num_iters - how many times to repeat benchmarked function. Default 1
  • save_params - save parameters passed to the benchmarked function in the file with benchmark results. In the example above num_items will be saved. Default False
  • save_output - save benchmarked function output. Should return dict {'name': value}. Default False. See example how to benchmark model results.

Run benchmark:

benchmark_results = benchmark_run(
    [search_in_list, search_in_set],
    SAVE_PATH,
    comment='initial benchmark search',
    rows_limit=10,
    extra_fields=['num_items'],
    metric='mean_time',
    bigger_is_better=False,
)  
  • functions - function or list of functions with benchmark decorator
  • save_file - path to file where to save results
  • comment - comment to save alongside the results
  • rows_limit - limit table rows in console output. Default 10
  • extra_fields - extra fields to include in console output
  • metric - metric which is used for comparison. Default mean_time
  • bigger_is_better - whether bigger value of metric indicates that result is better. For time benchmarks should be False, for model accuracy should be True. Default False

Prints to terminal and returns list of dictionaries with data for the last run.

Benchmark time output1

Change N=1000000 and rerun

Benchmark time output2

The same can be run from command line:

benchmark_run test_data/time/benchmark_functions.py --save_dir /tmp/ --comment "million items" --extra_fields num_items

Benchmark model results

from benchmarkit import benchmark, benchmark_run
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

MODEL_BENCHMARK_SAVE_FILE = '/tmp/benchmark_model.jsonl'

x, y = load_iris(return_X_y=True)

@benchmark(save_params=True, save_output=True)
def log_regression(C=1.0, fit_intercept=True):
    clf = LogisticRegression(
        random_state=0, 
        solver='lbfgs', 
        multi_class='multinomial', 
        C=C,
        fit_intercept=fit_intercept,
    )
    clf.fit(x, y)
    score = clf.score(x, y)
    return {'score': score}
    
model_benchmark_results = benchmark_run(
    log_regression,
    MODEL_BENCHMARK_SAVE_FILE,
    comment='baseline model',
    extra_fields=['C', 'fit_intercept'],
    metric='score',
    bigger_is_better=True,
)

Benchmark model1

Change hyperparameter C=0.5 and rerun. Output:

Benchmark model2

The same can be run from command line:

benchmark_run file_with_benchmark.py --save_dir /tmp/ --comment "stronger regularization" --extra_fields C fit_intercept --metric score --bigger_is_better

Analyze results from the file

from benchmarkit import benchmark_analyze

SAVE_PATH = '/tmp/benchmark_time.jsonl'

benchmark_df = benchmark_analyze(
    SAVE_PATH,
    func_name=None, 
    rows_limit=10,
    metric='mean_time',
    bigger_is_better=False,
    extra_fields=['num_items'],
)
  • input_path - path to .jsonl file or directory with .jsonl files with benchmark results
  • func_name - display statistics for particular function. If None then all functions, stored in file, are displayed. Default None
  • rows_limit - limit table rows in console output. Default 10
  • metric - metric which is used for comparison. Default mean_time
  • bigger_is_better - whether bigger value of metric indicates that result is better. For time benchmarks should be False, for model accuracy should be True. Default False
  • extra_fields - extra fields to include in console output

Prints to terminal and returns pandas DataFrame.

Benchmark analyze

The same can be run from command line:

benchmark_analyze /tmp/benchmark_time.jsonl --extra_fields num_items

Other examples

About

Benchmark and analyze functions' time execution and results over the course of development

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%