-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b8533ed
commit 4cec7d6
Showing
14 changed files
with
9,484 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
431 changes: 431 additions & 0 deletions
431
SigTuple Hack - LinearSVC built on pre-processing pipeline v1.1.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"##################################################################################\n", | ||
"## This uses the model created in sklearn v1, to predict the mask for the \n", | ||
"## given image\n", | ||
"##################################################################################\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os \n", | ||
"\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"np.random.seed(1337) # for reproducibility\n", | ||
"\n", | ||
"from sklearn import svm, metrics \n", | ||
"from sklearn.externals import joblib\n", | ||
"\n", | ||
"import scipy.misc\n", | ||
"from scipy.misc import imread\n", | ||
"import matplotlib.pyplot as plt\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"## Load the model\n", | ||
"#lin_clf = joblib.load('linearSVC_v1.pkl')\n", | ||
"lin_clf = joblib.load('grid_linearSVC_v0.pkl')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['017532875DDF.jpg',\n", | ||
" '029E137BB177.jpg',\n", | ||
" '029E137BB179.jpg',\n", | ||
" '072CBBB64F88.jpg',\n", | ||
" '072CBBB64F89.jpg',\n", | ||
" '0BC2C60F3BA0.jpg',\n", | ||
" '1468054105.jpg',\n", | ||
" '1468054163.jpg',\n", | ||
" '1468054267.jpg',\n", | ||
" '1468054306.jpg',\n", | ||
" '1468061314.jpg',\n", | ||
" '1468061317.jpg',\n", | ||
" '1468061347.jpg',\n", | ||
" '1468061368.jpg',\n", | ||
" '1468061411.jpg',\n", | ||
" '16B1C9836EB0.jpg',\n", | ||
" '264882623008.jpg',\n", | ||
" '2D6D41F5B4A1.jpg',\n", | ||
" '308A1C309EF5.jpg',\n", | ||
" '31A25DC60455.jpg',\n", | ||
" '31A25DC60456.jpg',\n", | ||
" '34DBA85D4F7A.jpg',\n", | ||
" '34DBA85D4F7E.jpg',\n", | ||
" '469CE8C373A0.jpg',\n", | ||
" '469CE8C373AC.jpg',\n", | ||
" '5274941329CC.jpg',\n", | ||
" '5274941329CF.jpg',\n", | ||
" '52B380E6A3F1.jpg',\n", | ||
" '52B380E6A3F2.jpg',\n", | ||
" '549C148B2D40.jpg',\n", | ||
" '549C148B2D4E.jpg',\n", | ||
" '558DF2AD8A5F.jpg',\n", | ||
" '5ABD740F7441.jpg',\n", | ||
" '5ABD740F744D.jpg',\n", | ||
" '5C75353DF081.jpg',\n", | ||
" '5C75353DF082.jpg',\n", | ||
" '682E28C9537E.jpg',\n", | ||
" '7D00B08A7B2D.jpg',\n", | ||
" '85639DF5DF72.jpg',\n", | ||
" '85639DF5DF7C.jpg',\n", | ||
" '8A87C3794B59.jpg',\n", | ||
" 'BB6EB0F294D8.jpg',\n", | ||
" 'BB6EB0F294DA.jpg',\n", | ||
" 'C11E6107F913.jpg',\n", | ||
" 'C3AC084EA711.jpg',\n", | ||
" 'C4D8C497AB5C.jpg',\n", | ||
" 'CD406B9D61C4.jpg',\n", | ||
" 'CD406B9D61CE.jpg',\n", | ||
" 'D0F6DE661D63.jpg',\n", | ||
" 'D0F6DE661D64.jpg',\n", | ||
" 'D0F6DE661D65.jpg',\n", | ||
" 'D28CDF85BDA3.jpg',\n", | ||
" 'D91DD06F9B3D.jpg',\n", | ||
" 'D91DD06F9B3E.jpg',\n", | ||
" 'DFC9150DB405.jpg',\n", | ||
" 'E04FFD273493.jpg',\n", | ||
" 'E04FFD273499.jpg',\n", | ||
" 'E3084BAFECCD.jpg',\n", | ||
" 'E89EFB01CEB9.jpg',\n", | ||
" 'EB2EFD28E53E.jpg',\n", | ||
" 'F1BFEA74B33D.jpg']" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"## Read the test files\n", | ||
"ip_files = []\n", | ||
"test_files = os.listdir('E:\\\\SigTuple_Hack\\\\Test_Data\\\\')\n", | ||
"ip_files += [f for f in test_files if f.endswith('.jpg') and 'mask' not in f]\n", | ||
"\n", | ||
"#ip_files" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"E:\\SigTuple_Hack\\Test_Data\\017532875DDF.jpg\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"img_file = ip_files[0]\n", | ||
"input_file = 'E:\\\\SigTuple_Hack\\\\Test_Data\\\\' + img_file\n", | ||
"mask_file = 'E:\\\\SigTuple_Hack\\\\Test_Data\\\\Mask\\\\' + img_file[:-4] + '-mask.jpg'\n", | ||
"print input_file\n", | ||
" \n", | ||
"# Load the image & flatten 3d to 2d .\n", | ||
"imgcolor = imread(input_file)/255.0\n", | ||
"imgshape = imgcolor.shape\n", | ||
"imgdf = pd.DataFrame(imgcolor.transpose(2,0,1).reshape(3,-1).transpose(1,0))\n", | ||
"imgdf.columns = ['Red', 'Green', 'Blue']\n", | ||
" \n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create mask, using LinearSVC model\n", | ||
"mask = lin_clf.predict(imgdf)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
" \n", | ||
"imgmask = mask.reshape(imgshape[0], imgshape[1])\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
" \n", | ||
"# Save file\n", | ||
"scipy.misc.imsave(mask_file, imgmask)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"E:\\SigTuple_Hack\\Test_Data\\017532875DDF.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\029E137BB177.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\029E137BB179.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\072CBBB64F88.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\072CBBB64F89.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\0BC2C60F3BA0.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468054105.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468054163.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468054267.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468054306.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468061314.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468061317.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468061347.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468061368.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\1468061411.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\16B1C9836EB0.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\264882623008.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\2D6D41F5B4A1.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\308A1C309EF5.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\31A25DC60455.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\31A25DC60456.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\34DBA85D4F7A.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\34DBA85D4F7E.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\469CE8C373A0.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\469CE8C373AC.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\5274941329CC.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\5274941329CF.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\52B380E6A3F1.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\52B380E6A3F2.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\549C148B2D40.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\549C148B2D4E.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\558DF2AD8A5F.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\5ABD740F7441.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\5ABD740F744D.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\5C75353DF081.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\5C75353DF082.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\682E28C9537E.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\7D00B08A7B2D.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\85639DF5DF72.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\85639DF5DF7C.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\8A87C3794B59.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\BB6EB0F294D8.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\BB6EB0F294DA.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\C11E6107F913.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\C3AC084EA711.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\C4D8C497AB5C.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\CD406B9D61C4.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\CD406B9D61CE.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\D0F6DE661D63.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\D0F6DE661D64.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\D0F6DE661D65.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\D28CDF85BDA3.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\D91DD06F9B3D.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\D91DD06F9B3E.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\DFC9150DB405.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\E04FFD273493.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\E04FFD273499.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\E3084BAFECCD.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\E89EFB01CEB9.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\EB2EFD28E53E.jpg\n", | ||
"E:\\SigTuple_Hack\\Test_Data\\F1BFEA74B33D.jpg\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"for img_file in ip_files:\n", | ||
" input_file = 'E:\\\\SigTuple_Hack\\\\Test_Data\\\\' + img_file\n", | ||
" mask_file = 'E:\\\\SigTuple_Hack\\\\Test_Data\\\\Mask\\\\' + img_file[:-4] + '-mask.jpg'\n", | ||
" print input_file\n", | ||
" \n", | ||
" # Load the image & flatten 3d to 2d .\n", | ||
" imgcolor = imread(input_file)/255.0\n", | ||
" imgshape = imgcolor.shape\n", | ||
" imgdf = pd.DataFrame(imgcolor.transpose(2,0,1).reshape(3,-1).transpose(1,0))\n", | ||
" imgdf.columns = ['Red', 'Green', 'Blue']\n", | ||
" \n", | ||
" # Create mask, using LinearSVC model\n", | ||
" mask = lin_clf.predict(imgdf)\n", | ||
" \n", | ||
" imgmask = mask.reshape(imgshape[0], imgshape[1])\n", | ||
" \n", | ||
" # Save file\n", | ||
" scipy.misc.imsave(mask_file, imgmask)\n", | ||
" \n", | ||
" " | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"anaconda-cloud": {}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |
Oops, something went wrong.