Skip to content

Commit

Permalink
Adding lj test. This scales slightly better and takes less time compared
Browse files Browse the repository at this point in the history
to the P3M test.
  • Loading branch information
Satish Kamath committed Jun 19, 2024
1 parent 9d51709 commit 7c6f347
Show file tree
Hide file tree
Showing 2 changed files with 187 additions and 6 deletions.
31 changes: 25 additions & 6 deletions eessi/testsuite/tests/apps/espresso/espresso.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def filter_scales_P3M():


@rfm.simple_test
class EESSI_ESPRESSO_P3M_IONIC_CRYSTALS(rfm.RunOnlyRegressionTest):
class EESSI_ESPRESSO(rfm.RunOnlyRegressionTest):

scale = parameter(filter_scales_P3M())
valid_prog_environs = ['default']
Expand All @@ -50,6 +50,7 @@ class EESSI_ESPRESSO_P3M_IONIC_CRYSTALS(rfm.RunOnlyRegressionTest):

benchmark_info = parameter([
('mpi.ionic_crystals.p3m', 'p3m'),
('mpi.particles.lj', 'lj'),
], fmt=lambda x: x[0], loggable=True)

@run_after('init')
Expand All @@ -75,16 +76,25 @@ def set_tag_ci(self):
if (self.benchmark_info[0] == 'mpi.ionic_crystals.p3m'):
self.tags.add('ionic_crystals_p3m')

if (self.benchmark_info[0] == 'mpi.particles.lj'):
self.tags.add('particles_lj')

@run_after('init')
def set_executable_opts(self):
"""Set executable opts based on device_type parameter"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)
if not self.has_custom_executable_opts:
if (not self.has_custom_executable_opts and self.benchmark_info[0] in ['mpi.ionic_crystals.p3m']):
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen.
self.executable_opts += ['--size', str(self.default_weak_scaling_system_size), '--weak-scaling']
utils.log(f'executable_opts set to {self.executable_opts}')
elif (not self.has_custom_executable_opts and self.benchmark_info[0] in ['mpi.particles.lj']):
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen. For this test the default values embedded in the lj.py are
# good enough. Otherwise custom executable options can be passed anyways.
self.executable = 'python3 lj.py' # Updating the executable.


@run_after('setup')
def set_num_tasks_per_node(self):
Expand All @@ -102,14 +112,23 @@ def set_mem(self):
@deferrable
def assert_completion(self):
'''Check completion'''
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int)
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao)
if self.benchmark_info[0] in ['mpi.ionic_crystals.p3m']:
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int)
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao)
elif self.benchmark_info[0] in ['mpi.particles.lj']:
return (sn.assert_found(r'^Algorithm executed.', self.stdout))

@deferrable
def assert_convergence(self):
'''Check convergence'''
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
check_string = False
energy = 0.0
if self.benchmark_info[0] in ['mpi.ionic_crystals.p3m']:
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
elif self.benchmark_info[0] in ['mpi.particles.lj']:
check_string = sn.assert_found(r'Final convergence met with relative tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+sim_energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
return (check_string and (energy != 0.0))

@sanity_function
Expand Down
162 changes: 162 additions & 0 deletions eessi/testsuite/tests/apps/espresso/src/lj.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
#
# Copyright (C) 2018-2024 The ESPResSo project
#
# This file is part of ESPResSo.
#
# ESPResSo is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ESPResSo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#

import argparse
import time
import espressomd
import numpy as np

required_features = ["LENNARD_JONES"]
espressomd.assert_features(required_features)

parser = argparse.ArgumentParser(description="Benchmark LJ simulations.")
parser.add_argument("--particles-per-core", metavar="N", action="store",
type=int, default=2000, required=False,
help="Number of particles in the simulation box")
parser.add_argument("--sample-size", metavar="S", action="store",
type=int, default=30, required=False,
help="Sample size")
parser.add_argument("--volume-fraction", metavar="FRAC", action="store",
type=float, default=0.50, required=False,
help="Fraction of the simulation box volume occupied by "
"particles (range: [0.01-0.74], default: 0.50)")
args = parser.parse_args()

# process and check arguments
measurement_steps = 100
if args.particles_per_core < 16000:
measurement_steps = 200
if args.particles_per_core < 10000:
measurement_steps = 500
if args.particles_per_core < 5000:
measurement_steps = 1000
if args.particles_per_core < 1000:
measurement_steps = 2000
if args.particles_per_core < 600:
measurement_steps = 4000
if args.particles_per_core < 260:
measurement_steps = 6000
assert args.volume_fraction > 0., "volume_fraction must be a positive number"
assert args.volume_fraction < np.pi / (3. * np.sqrt(2.)), \
"volume_fraction exceeds the physical limit of sphere packing (~0.74)"

# make simulation deterministic
np.random.seed(42)


def get_reference_values_per_atom(x):
# result of a polynomial fit in the range from 0.01 to 0.55
energy = 54.2 * x**3 - 23.8 * x**2 + 4.6 * x - 0.09
pressure = 377. * x**3 - 149. * x**2 + 32.2 * x - 0.58
return energy, pressure


def get_normalized_values_per_atom(system):
energy = system.analysis.energy()["non_bonded"]
pressure = system.analysis.pressure()["non_bonded"]
N = len(system.part)
V = system.volume()
return 2. * energy / N, 2. * pressure * V / N


system = espressomd.System(box_l=[10., 10., 10.])
system.time_step = 0.01
system.cell_system.skin = 0.5

lj_eps = 1.0 # LJ epsilon
lj_sig = 1.0 # particle diameter
lj_cut = lj_sig * 2**(1. / 6.) # cutoff distance

n_proc = system.cell_system.get_state()["n_nodes"]
n_part = n_proc * args.particles_per_core
node_grid = np.array(system.cell_system.node_grid)
# volume of N spheres with radius r: N * (4/3*pi*r^3)
box_v = args.particles_per_core * 4. / 3. * \
np.pi * (lj_sig / 2.)**3 / args.volume_fraction
# box_v = (x * n) * x * x for a column
system.box_l = float((box_v)**(1. / 3.)) * node_grid
assert np.abs(n_part * 4. / 3. * np.pi * (lj_sig / 2.)**3 /
np.prod(system.box_l) - args.volume_fraction) < 0.1

system.non_bonded_inter[0, 0].lennard_jones.set_params(
epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto")

system.part.add(pos=np.random.random((n_part, 3)) * system.box_l)

# energy minimization
max_steps = 1000
# particle forces for volume fractions between 0.1 and 0.5 follow a polynomial
target_f_max = 20. * args.volume_fraction**2
system.integrator.set_steepest_descent(
f_max=target_f_max, gamma=0.001, max_displacement=0.01 * lj_sig)
n_steps = system.integrator.run(max_steps)
assert n_steps < max_steps, f'''energy minimization failed: \
E = {system.analysis.energy()["total"] / len(system.part):.3g} per particle, \
f_max = {np.max(np.linalg.norm(system.part.all().f, axis=1)):.2g}, \
target f_max = {target_f_max:.2g}'''

# warmup
system.integrator.set_vv()
system.thermostat.set_langevin(kT=1.0, gamma=1.0, seed=42)

# tuning and equilibration
min_skin = 0.2
max_skin = 1.0
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin(
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100)))
print("Equilibration")
system.integrator.run(min(5 * measurement_steps, 60000))
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin(
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100)))
print("Equilibration")
system.integrator.run(min(10 * measurement_steps, 60000))

print("Sampling runtime...")
timings = []
energies = []
pressures = []
for i in range(args.sample_size):
tick = time.time()
system.integrator.run(measurement_steps)
tock = time.time()
t = (tock - tick) / measurement_steps
timings.append(t)
energy, pressure = get_normalized_values_per_atom(system)
energies.append(energy)
pressures.append(pressure)

sim_energy = np.mean(energies)
sim_pressure = np.mean(pressures)
ref_energy, ref_pressure = get_reference_values_per_atom(args.volume_fraction)

print("Algorithm executed. \n")
np.testing.assert_allclose(sim_energy, ref_energy, atol=0., rtol=0.1)
np.testing.assert_allclose(sim_pressure, ref_pressure, atol=0., rtol=0.1)

print("Final convergence met with relative tolerances: \n\
sim_energy: ", 0.1, "\n\
sim_pressure: ", 0.1, "\n")

header = '"mode","cores","mpi.x","mpi.y","mpi.z","particles","volume_fraction","mean","std"'
report = f'''"weak scaling",{n_proc},{node_grid[0]},{node_grid[1]},\
{node_grid[2]},{len(system.part)},{args.volume_fraction:.4f},\
{np.mean(timings):.3e},{np.std(timings,ddof=1):.3e}'''
print(header)
print(report)
print(f"Performance: {np.mean(timings):.3e}")

0 comments on commit 7c6f347

Please sign in to comment.