-
Notifications
You must be signed in to change notification settings - Fork 474
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1. Add conversion of vgg model from tensorflow model.
2. Add more converted models result.
- Loading branch information
1 parent
4f4cd70
commit 0a73203
Showing
2 changed files
with
95 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import tensorflow as tf | ||
from tensorflow.python import pywrap_tensorflow | ||
from collections import OrderedDict | ||
import re | ||
import torch | ||
|
||
import argparse | ||
parser = argparse.ArgumentParser(description='Convert tf-faster-rcnn model to pytorch-faster-rcnn model') | ||
parser.add_argument('--tensorflow_model', | ||
help='the path of tensorflow_model', | ||
default=None, type=str) | ||
|
||
args = parser.parse_args() | ||
|
||
reader = pywrap_tensorflow.NewCheckpointReader(args.tensorflow_model) | ||
var_to_shape_map = reader.get_variable_to_shape_map() | ||
var_dict = {k:reader.get_tensor(k) for k in var_to_shape_map.keys()} | ||
|
||
del var_dict['Variable'] | ||
|
||
for k in var_dict.keys(): | ||
if 'Momentum' in k: | ||
del var_dict[k] | ||
|
||
for k in var_dict.keys(): | ||
if k.find('/') >= 0: | ||
var_dict['vgg' + k[k.find('/'):]] = var_dict[k] | ||
del var_dict[k] | ||
|
||
dummy_replace = OrderedDict([ | ||
('weights', 'weight'),\ | ||
('biases', 'bias'),\ | ||
('vgg/rpn_conv/3x3', 'rpn_net'),\ | ||
('vgg/rpn_cls_score', 'rpn_cls_score_net'),\ | ||
('vgg/cls_score', 'cls_score_net'),\ | ||
('vgg/rpn_bbox_pred', 'rpn_bbox_pred_net'),\ | ||
('vgg/bbox_pred', 'bbox_pred_net'),\ | ||
('/', '.')]) | ||
|
||
for a, b in dummy_replace.items(): | ||
for k in var_dict.keys(): | ||
if a in k: | ||
var_dict[k.replace(a,b)] = var_dict[k] | ||
del var_dict[k] | ||
|
||
layer_map = OrderedDict([ | ||
('conv1.conv1_1', 'features.0'),\ | ||
('conv1.conv1_2', 'features.2'),\ | ||
('conv2.conv2_1', 'features.5'),\ | ||
('conv2.conv2_2', 'features.7'),\ | ||
('conv3.conv3_1', 'features.10'),\ | ||
('conv3.conv3_2', 'features.12'),\ | ||
('conv3.conv3_3', 'features.14'),\ | ||
('conv4.conv4_1', 'features.17'),\ | ||
('conv4.conv4_2', 'features.19'),\ | ||
('conv4.conv4_3', 'features.21'),\ | ||
('conv5.conv5_1', 'features.24'),\ | ||
('conv5.conv5_2', 'features.26'),\ | ||
('conv5.conv5_3', 'features.28'),\ | ||
('fc6', 'classifier.0'),\ | ||
('fc7', 'classifier.3')]) | ||
|
||
for a, b in layer_map.items(): | ||
for k in var_dict.keys(): | ||
if a in k: | ||
var_dict[k.replace(a,b)] = var_dict[k] | ||
del var_dict[k] | ||
|
||
for k in var_dict.keys(): | ||
if 'classifier.0' in k: | ||
if var_dict[k].ndim == 2: # weight | ||
var_dict[k] = var_dict[k].reshape(7,7,512,4096).transpose((3, 2, 0, 1)).reshape(4096, -1).copy(order='C') | ||
else: | ||
if var_dict[k].ndim == 4: | ||
var_dict[k] = var_dict[k].transpose((3, 2, 0, 1)).copy(order='C') | ||
if var_dict[k].ndim == 2: | ||
var_dict[k] = var_dict[k].transpose((1, 0)).copy(order='C') | ||
# assert x[k].shape == var_dict[k].shape, k | ||
|
||
for k in var_dict.keys(): | ||
var_dict[k] = torch.from_numpy(var_dict[k]) | ||
|
||
torch.save(var_dict, args.tensorflow_model[:args.tensorflow_model.find('.ckpt')]+'.pth') |