-
Notifications
You must be signed in to change notification settings - Fork 921
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Introduce some simple benchmarks for rolling window aggregations (#17613
) Previously we did not have any benchmarks for rolling aggregations. Introduce some, so we can measure the effects of any performance improvements we might make. Authors: - Lawrence Mitchell (https://github.com/wence-) Approvers: - MithunR (https://github.com/mythrocks) - Vyas Ramasubramani (https://github.com/vyasr) URL: #17613
- Loading branch information
Showing
3 changed files
with
210 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
/* | ||
* Copyright (c) 2024-2025, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <benchmarks/common/generate_input.hpp> | ||
#include <benchmarks/fixture/benchmark_fixture.hpp> | ||
|
||
#include <cudf/aggregation.hpp> | ||
#include <cudf/rolling.hpp> | ||
#include <cudf/sorting.hpp> | ||
#include <cudf/utilities/default_stream.hpp> | ||
|
||
#include <nvbench/nvbench.cuh> | ||
|
||
template <typename Type> | ||
void bench_row_grouped_rolling_sum(nvbench::state& state, nvbench::type_list<Type>) | ||
{ | ||
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality")); | ||
auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size")); | ||
auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size")); | ||
auto const min_periods = static_cast<cudf::size_type>(state.get_int64("min_periods")); | ||
|
||
auto const keys = [&] { | ||
data_profile const profile = | ||
data_profile_builder() | ||
.cardinality(cardinality) | ||
.no_validity() | ||
.distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows); | ||
auto keys = create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile); | ||
return cudf::sort(cudf::table_view{{keys->view()}}); | ||
}(); | ||
data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( | ||
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); | ||
auto vals = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); | ||
|
||
auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>(); | ||
|
||
auto const mem_stats_logger = cudf::memory_stats_logger(); | ||
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
auto const result = cudf::grouped_rolling_window( | ||
keys->view(), vals->view(), preceding_size, following_size, min_periods, *req); | ||
}); | ||
auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s"); | ||
state.add_buffer_size( | ||
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); | ||
} | ||
|
||
NVBENCH_BENCH_TYPES(bench_row_grouped_rolling_sum, | ||
NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>)) | ||
.set_name("row_grouped_rolling_sum") | ||
.add_int64_power_of_two_axis("num_rows", {14, 28}) | ||
.add_int64_axis("preceding_size", {1, 10}) | ||
.add_int64_axis("following_size", {2}) | ||
.add_int64_axis("min_periods", {1}) | ||
.add_int64_axis("cardinality", {10, 100, 1'000'000, 100'000'000}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
/* | ||
* Copyright (c) 2024-2025, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <benchmarks/common/generate_input.hpp> | ||
#include <benchmarks/fixture/benchmark_fixture.hpp> | ||
|
||
#include <cudf/aggregation.hpp> | ||
#include <cudf/rolling.hpp> | ||
#include <cudf/sorting.hpp> | ||
#include <cudf/types.hpp> | ||
#include <cudf/utilities/default_stream.hpp> | ||
|
||
#include <rmm/device_buffer.hpp> | ||
#include <rmm/device_uvector.hpp> | ||
#include <rmm/exec_policy.hpp> | ||
|
||
#include <thrust/iterator/counting_iterator.h> | ||
|
||
#include <nvbench/nvbench.cuh> | ||
|
||
#include <algorithm> | ||
|
||
template <typename Type> | ||
void bench_row_fixed_rolling_sum(nvbench::state& state, nvbench::type_list<Type>) | ||
{ | ||
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size")); | ||
auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size")); | ||
auto const min_periods = static_cast<cudf::size_type>(state.get_int64("min_periods")); | ||
|
||
data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( | ||
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); | ||
auto vals = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); | ||
|
||
auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>(); | ||
|
||
auto const mem_stats_logger = cudf::memory_stats_logger(); | ||
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
auto const result = | ||
cudf::rolling_window(vals->view(), preceding_size, following_size, min_periods, *req); | ||
}); | ||
auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s"); | ||
state.add_buffer_size( | ||
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); | ||
} | ||
|
||
template <typename Type> | ||
void bench_row_variable_rolling_sum(nvbench::state& state, nvbench::type_list<Type>) | ||
{ | ||
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size")); | ||
auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size")); | ||
|
||
auto vals = [&]() { | ||
data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution( | ||
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100); | ||
return create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile); | ||
}(); | ||
|
||
auto preceding = [&]() { | ||
auto data = std::vector<cudf::size_type>(num_rows); | ||
auto it = thrust::make_counting_iterator<cudf::size_type>(0); | ||
std::transform(it, it + num_rows, data.begin(), [num_rows, preceding_size](auto i) { | ||
return std::min(i + 1, std::max(preceding_size, i + 1 - num_rows)); | ||
}); | ||
auto buf = rmm::device_buffer( | ||
data.data(), num_rows * sizeof(cudf::size_type), cudf::get_default_stream()); | ||
cudf::get_default_stream().synchronize(); | ||
return std::make_unique<cudf::column>(cudf::data_type(cudf::type_to_id<cudf::size_type>()), | ||
num_rows, | ||
std::move(buf), | ||
rmm::device_buffer{}, | ||
0); | ||
}(); | ||
|
||
auto following = [&]() { | ||
auto data = std::vector<cudf::size_type>(num_rows); | ||
auto it = thrust::make_counting_iterator<cudf::size_type>(0); | ||
std::transform(it, it + num_rows, data.begin(), [num_rows, following_size](auto i) { | ||
return std::max(-i - 1, std::min(following_size, num_rows - i - 1)); | ||
}); | ||
auto buf = rmm::device_buffer( | ||
data.data(), num_rows * sizeof(cudf::size_type), cudf::get_default_stream()); | ||
cudf::get_default_stream().synchronize(); | ||
return std::make_unique<cudf::column>(cudf::data_type(cudf::type_to_id<cudf::size_type>()), | ||
num_rows, | ||
std::move(buf), | ||
rmm::device_buffer{}, | ||
0); | ||
}(); | ||
|
||
auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>(); | ||
|
||
auto const mem_stats_logger = cudf::memory_stats_logger(); | ||
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
auto const result = | ||
cudf::rolling_window(vals->view(), preceding->view(), following->view(), 1, *req); | ||
}); | ||
auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s"); | ||
state.add_buffer_size( | ||
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); | ||
} | ||
|
||
NVBENCH_BENCH_TYPES(bench_row_fixed_rolling_sum, | ||
NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>)) | ||
.set_name("row_fixed_rolling_sum") | ||
.add_int64_power_of_two_axis("num_rows", {14, 22, 28}) | ||
.add_int64_axis("preceding_size", {1, 10, 100}) | ||
.add_int64_axis("following_size", {2}) | ||
.add_int64_axis("min_periods", {1, 20}); | ||
|
||
NVBENCH_BENCH_TYPES(bench_row_variable_rolling_sum, | ||
NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>)) | ||
.set_name("row_variable_rolling_sum") | ||
.add_int64_power_of_two_axis("num_rows", {14, 22, 28}) | ||
.add_int64_axis("preceding_size", {10, 100}) | ||
.add_int64_axis("following_size", {2}); |