Skip to content

raja1196/wave2vec-recognize-docker

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wav2vec

wav2vec 2.0 Recognize Implementation.

Disclaimer

Wave2vec is part of fairseq This repository is the result of the issue submitted in the fairseq repository here.

Resource

Please first download one of the pre-trained models available from fairseq (see later).

Pre-trained models

Model Finetuning split Dataset Model
Wav2Vec 2.0 Base No finetuning Librispeech download
Wav2Vec 2.0 Base 10 minutes Librispeech download
Wav2Vec 2.0 Base 100 hours Librispeech download
Wav2Vec 2.0 Base 960 hours Librispeech download
Wav2Vec 2.0 Large No finetuning Librispeech download
Wav2Vec 2.0 Large 10 minutes Librispeech download
Wav2Vec 2.0 Large 100 hours Librispeech download
Wav2Vec 2.0 Large 960 hours Librispeech download
Wav2Vec 2.0 Large (LV-60) No finetuning Libri-Light download
Wav2Vec 2.0 Large (LV-60) 10 minutes Libri-Light + Librispeech download
Wav2Vec 2.0 Large (LV-60) 100 hours Libri-Light + Librispeech download
Wav2Vec 2.0 Large (LV-60) 960 hours Libri-Light + Librispeech download

How to install

We make use of python:3.7.4-slim-buster as base image in order to let developers to have more flexibility in customize this Dockerfile. For a simplifed install please refer to Alternative Install section. If you go for this container, please install using the provided Dockerfile

docker build -t wav2vec -f Dockerfile .

How to Run

Before running, please copy the downloaded model (e.g. wav2vec_small_10m.pt) to the data/ folder. Please copy there the wav file to test as well, like data/temp.wav in the following examples. So the data/ folder will now look like this

.
├── dict.ltr.txt
├── temp.wav
└── wav2vec_small_10m.pt

We now run the container as a daemon and the we enter and execute the recognition.

docker run -d -it --rm -v $PWD/data:/app/data --name w2v wav2vec
docker exec -it w2v bash
python examples/wav2vec/recognize.py --wav_path /app/data/temp.wav --w2v_path /app/data/wav2vec_small_10m.pt --target_dict_path /app/data/dict.ltr.txt 

Alternative install

We provide an alternative Dockerfile named wav2letter.Dockerfile that makes use of wav2letter/wav2letter:cpu-latest Docker image as FROM. Here are the commands for build, install and run in this case:

docker build -t wav2vec2 -f wav2letter.Dockerfile .
docker run -d -it --rm -v $PWD/data:/root/data --name w2v2 wav2vec2
docker exec -it w2v2 bash
python examples/wav2vec/recognize.py --wav_path /root/data/temp.wav --w2v_path /root/data/wav2vec_small_10m.pt --target_dict_path /root/data/dict.ltr.txt 

Contributors

Thanks to all contributors to this repo.

About

Wave2vec 2.0 Recognize pipeline

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 73.6%
  • Dockerfile 26.4%