-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #253 from qpv-research-group/eqe_issues
Solve issue with boundary condition in depletion approximation
- Loading branch information
Showing
14 changed files
with
2,332 additions
and
879 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
from solcore import siUnits, material, si | ||
from solcore.interpolate import interp1d | ||
from solcore.solar_cell import SolarCell | ||
from solcore.structure import Junction, Layer | ||
from solcore.solar_cell_solver import solar_cell_solver | ||
|
||
all_materials = [] | ||
|
||
def this_dir_file(f): | ||
return "data/" + f | ||
|
||
# We need to build the solar cell layer by layer. | ||
# We start from the AR coating. In this case, we load it from an an external file | ||
refl_nm = np.loadtxt(this_dir_file("MgF-ZnS_AR.csv"), unpack=True, delimiter=",") | ||
ref = interp1d(x=siUnits(refl_nm[0], "nm"), y=refl_nm[1], | ||
bounds_error=False, fill_value=0) | ||
|
||
# TOP CELL - GaInP | ||
# Now we build the top cell, which requires the n and p sides of GaInP and a window | ||
# layer. We also load the absorption coefficient from an external file. We also add | ||
# some extra parameters needed for the calculation such as the minority carriers | ||
# diffusion lengths | ||
AlInP = material("AlInP") | ||
InGaP = material("GaInP") | ||
window_material = AlInP(Al=0.52) | ||
top_cell_n_material = InGaP(In=0.49, Nd=siUnits(2e18, "cm-3"), | ||
hole_diffusion_length=si("200nm")) | ||
top_cell_p_material = InGaP(In=0.49, Na=siUnits(1e17, "cm-3"), | ||
electron_diffusion_length=si("1um")) | ||
|
||
all_materials.append(window_material) | ||
all_materials.append(top_cell_n_material) | ||
all_materials.append(top_cell_p_material) | ||
|
||
# MID CELL - InGaAs | ||
# We add manually the absorption coefficient of InGaAs since the one contained in the | ||
# database doesn't cover enough range, keeping in mind that the data has to be | ||
# provided as a function that takes wavelengths (m) as input and | ||
# returns absorption (1/m) | ||
InGaAs = material("InGaAs") | ||
InGaAs_alpha = np.loadtxt(this_dir_file("in01gaas.csv"), unpack=True, delimiter=",") | ||
InGaAs.alpha = interp1d(x=1240e-9 / InGaAs_alpha[0][::-1], | ||
y=InGaAs_alpha[1][::-1], bounds_error=False, fill_value=0) | ||
|
||
mid_cell_n_material = InGaAs(In=0.01, Nd=siUnits(3e18, "cm-3"), | ||
hole_diffusion_length=si("500nm")) | ||
mid_cell_p_material = InGaAs(In=0.01, Na=siUnits(1e17, "cm-3"), | ||
electron_diffusion_length=si("5um")) | ||
|
||
all_materials.append(mid_cell_n_material) | ||
all_materials.append(mid_cell_p_material) | ||
|
||
# BOTTOM CELL - Ge | ||
Ge = material("Ge") | ||
|
||
bot_cell_n_material = Ge(Nd=siUnits(2e18, "cm-3"), hole_diffusion_length=si("800nm")) | ||
bot_cell_p_material = Ge(Na=siUnits(1e17, "cm-3"), electron_diffusion_length=si("50um")) | ||
|
||
all_materials.append(bot_cell_n_material) | ||
all_materials.append(bot_cell_p_material) | ||
|
||
# We add some other properties to the materials, assumed the same in all cases, for | ||
# simplicity. If different, we should have added them above in the definition of the | ||
# materials. | ||
for mat in all_materials: | ||
mat.hole_mobility = 5e-2 | ||
mat.electron_mobility = 3.4e-3 | ||
mat.hole_mobility = 3.4e-3 | ||
mat.electron_mobility = 5e-2 | ||
|
||
# And, finally, we put everything together, adding also the surface recombination | ||
# velocities. We also add some shading due to the metallisation of the cell = 8%, | ||
# and indicate it has an area of 0.7x0.7 mm2 (converted to m2) | ||
solar_cell = SolarCell( | ||
[ | ||
Junction([Layer(si("25nm"), material=window_material, role='window'), | ||
Layer(si("100nm"), material=top_cell_n_material, role='emitter'), | ||
Layer(si("600nm"), material=top_cell_p_material, role='base'), | ||
], sn=1, sp=1, kind='DA'), | ||
Junction([Layer(si("200nm"), material=mid_cell_n_material, role='emitter'), | ||
Layer(si("3000nm"), material=mid_cell_p_material, role='base'), | ||
], sn=1, sp=1, kind='DA'), | ||
Junction([Layer(si("400nm"), material=bot_cell_n_material, role='emitter'), | ||
Layer(si("100um"), material=bot_cell_p_material, role='base'), | ||
], sn=1, sp=1, kind='DA'), | ||
], reflectivity=ref, shading=0.08, cell_area=0.7 * 0.7 / 1e4) | ||
|
||
wl = np.linspace(300, 1800, 700) * 1e-9 | ||
solar_cell_solver(solar_cell, 'qe', user_options={'wavelength': wl, | ||
'da_mode': 'green'}) | ||
|
||
plt.figure(1) | ||
plt.plot(wl * 1e9, solar_cell[0].eqe(wl) * 100, 'b', label='GaInP') | ||
plt.plot(wl * 1e9, solar_cell[1].eqe(wl) * 100, 'g', label='InGaAs') | ||
plt.plot(wl * 1e9, solar_cell[2].eqe(wl) * 100, 'r', label='Ge') | ||
|
||
plt.legend() | ||
plt.ylim(0, 100) | ||
plt.ylabel('EQE (%)') | ||
plt.xlabel('Wavelength (nm)') | ||
plt.show() | ||
|
||
V = np.linspace(0, 3, 300) | ||
solar_cell_solver(solar_cell, 'iv', user_options={'voltages': V, | ||
'light_iv': True, | ||
'wavelength': wl, | ||
'da_mode': 'green' | ||
}) | ||
|
||
plt.figure(2) | ||
plt.plot(V, solar_cell.iv['IV'][1], 'k', linewidth=3, label='Total') | ||
plt.plot(V, -solar_cell[0].iv(V), 'b', label='GaInP') | ||
plt.plot(V, -solar_cell[1].iv(V), 'g', label='InGaAs') | ||
plt.plot(V, -solar_cell[2].iv(V), 'r', label='Ge') | ||
|
||
plt.legend() | ||
plt.ylim(0, 230) | ||
plt.xlim(0, 3) | ||
plt.ylabel('Current (A/m$^2$)') | ||
plt.xlabel('Voltage (V)') | ||
|
||
plt.show() |
Oops, something went wrong.