-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
move slater sampler tests to separate file (#342)
- Loading branch information
Showing
2 changed files
with
136 additions
and
116 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
# (C) Copyright IBM 2024. | ||
# | ||
# This code is licensed under the Apache License, Version 2.0. You may | ||
# obtain a copy of this license in the LICENSE.txt file in the root directory | ||
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# Any modifications or derivative works of this code must retain this | ||
# copyright notice, and modified files need to carry a notice indicating | ||
# that they have been altered from the originals. | ||
|
||
"""Tests for sampling Slater determinants.""" | ||
|
||
from __future__ import annotations | ||
|
||
import itertools | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
import ffsim | ||
from ffsim.states.bitstring import BitstringType | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"norb, nelec, bitstring_type", | ||
[ | ||
(norb, nelec, bitstring_type) | ||
for (norb, nelec), bitstring_type in itertools.product( | ||
ffsim.testing.generate_norb_nelec(range(1, 5)), BitstringType | ||
) | ||
], | ||
) | ||
def test_sample_slater_determinant_spinful( | ||
norb: int, nelec: tuple[int, int], bitstring_type: BitstringType | ||
): | ||
"""Test sample Slater determinant, spinful.""" | ||
rng = np.random.default_rng(1234) | ||
shots = 1000 | ||
for _ in range(min(2, ffsim.dim(norb, nelec))): | ||
rotation_a = ffsim.random.random_unitary(norb, seed=rng) | ||
rotation_b = ffsim.random.random_unitary(norb, seed=rng) | ||
occupied_orbitals = ffsim.testing.random_occupied_orbitals( | ||
norb, nelec, seed=rng | ||
) | ||
rdm_a, rdm_b = ffsim.slater_determinant_rdms( | ||
norb, occupied_orbitals, (rotation_a, rotation_b) | ||
) | ||
vec = ffsim.slater_determinant( | ||
norb, occupied_orbitals, (rotation_a, rotation_b) | ||
) | ||
test_distribution = np.abs(vec) ** 2 | ||
samples = ffsim.sample_slater_determinant( | ||
(rdm_a, rdm_b), | ||
norb, | ||
nelec, | ||
shots=shots, | ||
bitstring_type=bitstring_type, | ||
seed=rng, | ||
) | ||
addresses = ffsim.strings_to_addresses(samples, norb, nelec) | ||
indices, counts = np.unique(addresses, return_counts=True) | ||
assert np.sum(counts) == shots | ||
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) | ||
empirical_distribution[indices] = counts / shots | ||
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"norb, nelec, bitstring_type", | ||
[ | ||
(norb, nelec, bitstring_type) | ||
for (norb, nelec), bitstring_type in itertools.product( | ||
ffsim.testing.generate_norb_nocc(range(1, 5)), BitstringType | ||
) | ||
], | ||
) | ||
def test_sample_slater_determinant_spinless( | ||
norb: int, nelec: int, bitstring_type: BitstringType | ||
): | ||
"""Test sample Slater determinant, spinless.""" | ||
rng = np.random.default_rng(1234) | ||
shots = 1000 | ||
rotation = ffsim.random.random_unitary(norb, seed=rng) | ||
for occupied_orbitals in itertools.combinations(range(norb), nelec): | ||
rdm = ffsim.slater_determinant_rdms(norb, occupied_orbitals, rotation, rank=1) | ||
vec = ffsim.slater_determinant(norb, occupied_orbitals, rotation) | ||
test_distribution = np.abs(vec) ** 2 | ||
samples = ffsim.sample_slater_determinant( | ||
rdm, norb, nelec, shots=shots, bitstring_type=bitstring_type, seed=rng | ||
) | ||
addresses = ffsim.strings_to_addresses(samples, norb, nelec) | ||
indices, counts = np.unique(addresses, return_counts=True) | ||
assert np.sum(counts) == shots | ||
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) | ||
empirical_distribution[indices] = counts / shots | ||
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 | ||
|
||
|
||
def test_sample_slater_determinant_large(): | ||
"""Test sample Slater determinant for a larger number of orbitals.""" | ||
norb = 6 | ||
nelec = (3, 2) | ||
|
||
rng = np.random.default_rng(1234) | ||
shots = 5000 | ||
rotation_a = ffsim.random.random_unitary(norb, seed=rng) | ||
rotation_b = ffsim.random.random_unitary(norb, seed=rng) | ||
occupied_orbitals = ((0, 2, 3), (2, 4)) | ||
rdm_a, rdm_b = ffsim.slater_determinant_rdms( | ||
norb, occupied_orbitals, (rotation_a, rotation_b) | ||
) | ||
vec = ffsim.slater_determinant(norb, occupied_orbitals, (rotation_a, rotation_b)) | ||
test_distribution = np.abs(vec) ** 2 | ||
samples = ffsim.sample_slater_determinant( | ||
(rdm_a, rdm_b), norb, nelec, shots=shots, seed=rng | ||
) | ||
addresses = ffsim.strings_to_addresses(samples, norb, nelec) | ||
indices, counts = np.unique(addresses, return_counts=True) | ||
assert np.sum(counts) == shots | ||
empirical_distribution = np.zeros(ffsim.dim(norb, nelec), dtype=float) | ||
empirical_distribution[indices] = counts / shots | ||
assert np.sum(np.sqrt(test_distribution * empirical_distribution)) > 0.99 | ||
|
||
|
||
def test_sample_slater_determinant_restrict(): | ||
"""Test sample Slater determinant with subset of orbitals.""" | ||
norb = 8 | ||
nelec = (4, 3) | ||
|
||
shots = 10 | ||
occupied_orbitals = ((0, 2, 3, 5), (2, 3, 4)) | ||
rdm_a, rdm_b = ffsim.slater_determinant_rdms(norb, occupied_orbitals) | ||
samples = ffsim.sample_slater_determinant( | ||
(rdm_a, rdm_b), norb, nelec, orbs=([1, 2, 5], [3, 4, 5]), shots=shots | ||
) | ||
assert samples == ["011110"] * 10 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters