Skip to content

Commit

Permalink
Merge pull request #691 from tgwoodcock/detector_orientation
Browse files Browse the repository at this point in the history
Detector orientation with euler angles: simulations from master patterns and GeometricalKikuchiPatternSimulation
  • Loading branch information
hakonanes authored Dec 30, 2024
2 parents 1c56181 + c7fd467 commit b11329e
Show file tree
Hide file tree
Showing 16 changed files with 1,643 additions and 222 deletions.
357 changes: 357 additions & 0 deletions src/kikuchipy/_utils/_detector_coordinates.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,357 @@
# Copyright 2019-2024 The kikuchipy developers
#
# This file is part of kikuchipy.
#
# kikuchipy is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# kikuchipy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with kikuchipy. If not, see <http://www.gnu.org/licenses/>.

"""Functions for converting between pixel and gnomonic detector coordinates."""

from typing import Union

import numpy as np


def get_coordinate_conversions(gnomonic_bounds: np.ndarray, bounds: np.ndarray) -> dict:
"""
Get factors for converting between pixel and gnomonic coordinates.
Return a dict 'conversions' containing the keys
"pix_to_gn", containing factors for converting
pixel to gnomonic coordinates, and "gn_to_pix",
containing factors for converting gnomonic to pixel
coordinates.
Under each of these keys is a further dict with the
keys: "m_x", "c_x", "m_y" and "c_y". These are the
slope (m) and y-intercept (c) corresponding to
y = mx + c, which describes the linear conversion
of the coordinates. A (different) linear relationship
is required for x (column) and y(row) coordinates,
hence the two sets of m and c parameters.
Parameters
----------
gnomonic_bounds
Array of shape at least (4,) containing the
gnomonic bounds of the EBSD detector screen.
Typically obtained as the "gnomonic_bounds"
property of an EBSDDetector.
bounds
Array of four ints giving the detector bounds
[x0, x1, y0, y1] in pixel coordinates. Typically
obtained from the "bounds" property of an
EBSDDetector.
Returns
-------
conversions
Contains the keys "pix_to_gn", containing factors
for converting pixel to gnomonic coordinates, and
"gn_to_pix", containing factors for converting
gnomonic to pixel coordinates.
Under each of these keys is a further dict with the
keys: "m_x", "c_x", "m_y" and "c_y". These are the
slope (m) and y-intercept (c) corresponding to
y = mx + c, which describes the linear conversion
of the coordinates. A (different) linear relationship
is required for x (column) and y(row) coordinates,
hence the two sets of m and c parameters.
Examples
--------
Create an EBSD detector and get the coordinate conversion factors.
>>> import numpy as np
>>> import kikuchipy as kp
>>> from kikuchipy._utils._detector_coordinates import get_coordinate_conversions
>>> det = kp.detectors.EBSDDetector(
... shape=(60, 60),
... pc=np.ones((10, 20, 3)) * (0.421, 0.779, 0.505),
... convention="edax",
... px_size=70,
... binning=8,
... tilt=5,
... sample_tilt=70,
... )
>>> det
EBSDDetector(shape=(60, 60), pc=(0.421, 0.221, 0.505), sample_tilt=70.0, tilt=5.0, azimuthal=0.0, twist=0.0, binning=8.0, px_size=70.0 um)
>>> det.navigation_shape
(10, 20)
>>> det.bounds
array([ 0, 59, 0, 59])
>>> det.gnomonic_bounds[0, 0]
array([-0.83366337, 1.14653465, -1.54257426, 0.43762376])
>>> conversions = get_coordinate_conversions(det.gnomonic_bounds, det.bounds)
>>> conversions["pix_to_gn"]["m_x"].shape
(10, 20)
"""
gnomonic_bounds = np.atleast_2d(gnomonic_bounds)

m_pix_to_gn_x = (gnomonic_bounds[..., 1] - gnomonic_bounds[..., 0]) / (
bounds[1] + 1
)
c_pix_to_gn_x = gnomonic_bounds[..., 0]

m_pix_to_gn_y = (gnomonic_bounds[..., 2] - gnomonic_bounds[..., 3]) / (
bounds[3] + 1
)
c_pix_to_gn_y = gnomonic_bounds[..., 3]

m_gn_to_pix_x = 1 / m_pix_to_gn_x
c_gn_to_pix_x = -c_pix_to_gn_x / m_pix_to_gn_x

m_gn_to_pix_y = 1 / m_pix_to_gn_y
c_gn_to_pix_y = -c_pix_to_gn_y / m_pix_to_gn_y

conversions = {
"pix_to_gn": {
"m_x": m_pix_to_gn_x,
"c_x": c_pix_to_gn_x,
"m_y": m_pix_to_gn_y,
"c_y": c_pix_to_gn_y,
},
"gn_to_pix": {
"m_x": m_gn_to_pix_x,
"c_x": c_gn_to_pix_x,
"m_y": m_gn_to_pix_y,
"c_y": c_gn_to_pix_y,
},
}

return conversions


def convert_coordinates(
coords: np.ndarray,
direction: str,
conversions: dict,
detector_index: Union[None, tuple, int] = None,
) -> np.ndarray:
"""
Convert between gnomonic and pixel coordinates.
Parameters
----------
coords
An array of coordinates of any shape whereby the
x and y coordinates to be converted are stored in
the last axis.
direction
Either "pix_to_gn" or "gn_to_pix", depending on the
direction of conversion needed.
conversions
Dict containing the conversion parameters. Usually
the output of get_coordinate_conversions().
Contains the keys "pix_to_gn", containing factors
for converting pixel to gnomonic coordinates, and
"gn_to_pix", containing factors for converting
gnomonic to pixel coordinates.
Under each of these keys is a further dict with the
keys: "m_x", "c_x", "m_y" and "c_y". These are the
slope (m) and y-intercept (c) corresponding to
y = mx + c, which describes the linear conversion
of the coordinates. A (different) linear relationship
is required for x (column) and y(row) coordinates,
hence the two sets of m and c parameters.
The shape of each array of conversion factors
typically corresponds to the navigation shape
of an EBSDDetector.
detector_index
Index showing which conversion factors in *conversions[direction]*
should be applied to *coords*.
If None, **all** conversion factors in *conversions[direction]*
are applied to *coords*.
If an int is supplied, this refers to an index in a 1D dataset.
A 1D tuple *e.g.* (3,) can also be passed for a 1D dataset.
A 2D index can be specified by supplying a tuple *e.g.* (2, 3).
The default value is None.
Returns
-------
coords_out
Array of coords but with values converted as specified
by direction. The shape is either the same as the input
or is the navigation shape then the shape of the input.
Examples
--------
Convert 300 xy coordinates for all patterns in a dataset.
>>> import numpy as np
>>> import kikuchipy as kp
>>> from kikuchipy._utils._detector_coordinates import (get_coordinate_conversions, convert_coordinates)
>>> s = kp.data.nickel_ebsd_small()
>>> det = s.detector
>>> det.navigation_shape
(3, 3)
>>> coords_2d = np.random.randint(0, 60, (300, 2))
>>> coords_2d.shape
(300, 2)
>>> conv = get_coordinate_conversions(det.gnomonic_bounds, det.bounds)
>>> coords_out = convert_coordinates(coords_2d, "pix_to_gn", conv, None)
>>> coords_out.shape
(3, 3, 300, 2)
Convert 300 xy coordinates for the pattern at index (1, 2) in a dataset.
>>> import numpy as np
>>> import kikuchipy as kp
>>> from kikuchipy._utils._detector_coordinates import (get_coordinate_conversions, convert_coordinates)
>>> s = kp.data.nickel_ebsd_small()
>>> det = s.detector
>>> det.navigation_shape
(3, 3)
>>> coords_2d = np.random.randint(0, 60, (300, 2))
>>> coords_2d.shape
(300, 2)
>>> conv = get_coordinate_conversions(det.gnomonic_bounds, det.bounds)
>>> coords_out = convert_coordinates(coords_2d, "pix_to_gn", conv, (1, 2))
>>> coords_out.shape
(300, 2)
Convert 17 sets of 300 xy coordinates, different for each pattern in a dataset.
>>> import numpy as np
>>> import kikuchipy as kp
>>> from kikuchipy._utils._detector_coordinates import (get_coordinate_conversions, convert_coordinates)
>>> s = kp.data.nickel_ebsd_small()
>>> det = s.detector
>>> det.navigation_shape
(3, 3)
>>> coords_2d = np.random.randint(0, 60, (3, 3, 17, 300, 2))
>>> coords_2d.shape
(3, 3, 17, 300, 2)
>>> conv = get_coordinate_conversions(det.gnomonic_bounds, det.bounds)
>>> coords_out = convert_coordinates(coords_2d, "pix_to_gn", conv, None)
>>> coords_out.shape
(3, 3, 17, 300, 2)
Convert 17 sets of 300 xy coordinates, the same for all pattern in a dataset.
>>> import numpy as np
>>> import kikuchipy as kp
>>> from kikuchipy._utils._detector_coordinates import (get_coordinate_conversions, convert_coordinates)
>>> s = kp.data.nickel_ebsd_small()
>>> det = s.detector
>>> det.navigation_shape
(3, 3)
>>> coords_2d = np.random.randint(0, 60, (17, 300, 2))
>>> coords_2d.shape
(17, 300, 2)
>>> conv = get_coordinate_conversions(det.gnomonic_bounds, det.bounds)
>>> coords_out = convert_coordinates(coords_2d, "pix_to_gn", conv, None)
>>> coords_out.shape
(3, 3, 17, 300, 2)
"""
coords = np.atleast_2d(coords)

nav_shape = conversions[direction]["m_x"].shape
nav_ndim = len(nav_shape)

if isinstance(detector_index, type(None)):
detector_index = ()
if coords.ndim >= nav_ndim + 2 and coords.shape[:nav_ndim] == nav_shape:
# one or more sets of coords, different for each image
out_shape = coords.shape
else:
# one or more sets of coords, the same for each image
out_shape = nav_shape + coords.shape

extra_axes = list(range(nav_ndim, len(out_shape) - 1))

coords_out = _convert_coordinates(
coords,
out_shape,
detector_index,
np.expand_dims(conversions[direction]["m_x"], extra_axes),
np.expand_dims(conversions[direction]["c_x"], extra_axes),
np.expand_dims(conversions[direction]["m_y"], extra_axes),
np.expand_dims(conversions[direction]["c_y"], extra_axes),
)

else:
if isinstance(detector_index, int):
detector_index = tuple([detector_index])

out_shape = coords.shape

coords_out = _convert_coordinates(
coords,
out_shape,
detector_index,
conversions[direction]["m_x"],
conversions[direction]["c_x"],
conversions[direction]["m_y"],
conversions[direction]["c_y"],
)

return coords_out


def _convert_coordinates(
coords: np.ndarray,
out_shape: tuple,
detector_index: tuple,
m_x: Union[np.ndarray, float],
c_x: Union[np.ndarray, float],
m_y: Union[np.ndarray, float],
c_y: Union[np.ndarray, float],
) -> np.ndarray:
"""
Return converted coordinate depending on arguments.
This function is usually called by convert_coordinates().
Parameters
----------
coords
An array of coordinates whereby the x and y coordinates
to be converted are stored in the last axis
direction
Either "pix_to_gn" or "gn_to_pix", depending on the
direction of conversion needed.
conversions
dict
Parameters
----------
coords
An array of coordinates whereby the x and y coordinates
to be converted are stored in the last axis.
out_shape
Tuple of ints giving the output shape.
detector_index
Tuple giving the detector index..
m_x
Conversion factor m for x coordinate.
c_x
Conversion factor c for x coordinate.
m_y
Conversion factor m for y coordinate.
c_y
Conversion factor c for y coordinate.
Returns
-------
coords_out
Array of coords the same shape as the input but
with converted values.
"""
coords_out = np.zeros(out_shape, dtype=float)

coords_out[..., 0] = m_x[detector_index] * coords[..., 0] + c_x[detector_index]
coords_out[..., 1] = m_y[detector_index] * coords[..., 1] + c_y[detector_index]

return coords_out
Loading

0 comments on commit b11329e

Please sign in to comment.