Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Check number of kwargs matches num_workers #2465

Merged
merged 3 commits into from
Oct 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions test/test_env.py
Original file line number Diff line number Diff line change
Expand Up @@ -491,6 +491,26 @@ def test_mb_env_batch_lock(self, device, seed=0):


class TestParallel:
def test_create_env_fn(self, maybe_fork_ParallelEnv):
def make_env():
return GymEnv(PENDULUM_VERSIONED())

with pytest.raises(
RuntimeError, match="len\\(create_env_fn\\) and num_workers mismatch"
):
maybe_fork_ParallelEnv(4, [make_env, make_env])

def test_create_env_kwargs(self, maybe_fork_ParallelEnv):
def make_env():
return GymEnv(PENDULUM_VERSIONED())

with pytest.raises(
RuntimeError, match="len\\(create_env_kwargs\\) and num_workers mismatch"
):
maybe_fork_ParallelEnv(
4, make_env, create_env_kwargs=[{"seed": 0}, {"seed": 1}]
)

@pytest.mark.skipif(
not torch.cuda.device_count(), reason="No cuda device detected."
)
Expand Down Expand Up @@ -1121,6 +1141,25 @@ def env_fn2(seed):
env1.close()
env2.close()

@pytest.mark.parametrize("parallel", [True, False])
def test_parallel_env_update_kwargs(self, parallel, maybe_fork_ParallelEnv):
def make_env(seed=None):
env = DiscreteActionConvMockEnv()
if seed is not None:
env.set_seed(seed)
return env

_class = maybe_fork_ParallelEnv if parallel else SerialEnv
env = _class(
num_workers=2,
create_env_fn=make_env,
create_env_kwargs=[{"seed": 0}, {"seed": 1}],
)
with pytest.raises(
RuntimeError, match="len\\(kwargs\\) and num_workers mismatch"
):
env.update_kwargs([{"seed": 42}])

@pytest.mark.parametrize("batch_size", [(32, 5), (4,), (1,), ()])
@pytest.mark.parametrize("n_workers", [2, 1])
def test_parallel_env_reset_flag(
Expand Down
17 changes: 14 additions & 3 deletions torchrl/envs/batched_envs.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
TensorDictBase,
unravel_key,
)
from tensordict.utils import _zip_strict
from torch import multiprocessing as mp
from torchrl._utils import (
_check_for_faulty_process,
Expand Down Expand Up @@ -318,14 +319,20 @@ def __init__(
create_env_fn = [create_env_fn for _ in range(num_workers)]
elif len(create_env_fn) != num_workers:
raise RuntimeError(
f"num_workers and len(create_env_fn) mismatch, "
f"got {len(create_env_fn)} and {num_workers}"
f"len(create_env_fn) and num_workers mismatch, "
f"got {len(create_env_fn)} and {num_workers}."
)

create_env_kwargs = {} if create_env_kwargs is None else create_env_kwargs
if isinstance(create_env_kwargs, dict):
create_env_kwargs = [
deepcopy(create_env_kwargs) for _ in range(num_workers)
]
elif len(create_env_kwargs) != num_workers:
raise RuntimeError(
f"len(create_env_kwargs) and num_workers mismatch, "
f"got {len(create_env_kwargs)} and {num_workers}."
)

self.policy_proof = policy_proof
self.num_workers = num_workers
Expand Down Expand Up @@ -534,7 +541,11 @@ def update_kwargs(self, kwargs: Union[dict, List[dict]]) -> None:
for _kwargs in self.create_env_kwargs:
_kwargs.update(kwargs)
else:
for _kwargs, _new_kwargs in zip(self.create_env_kwargs, kwargs):
if len(kwargs) != self.num_workers:
raise RuntimeError(
f"len(kwargs) and num_workers mismatch, got {len(kwargs)} and {self.num_workers}."
)
for _kwargs, _new_kwargs in _zip_strict(self.create_env_kwargs, kwargs):
_kwargs.update(_new_kwargs)

def _get_in_keys_to_exclude(self, tensordict):
Expand Down
Loading