Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Refactor] Remove _run_checks from TensorDict.__init__ #2256

Merged
merged 1 commit into from
Jun 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions torchrl/collectors/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,8 +210,20 @@ def nest(x, splits=splits):

layout = as_nested if as_nested is not bool else None

def nest(*x):
return torch.nested.nested_tensor(list(x), layout=layout)
if torch.__version__ < "2.4":
# Layout must be True, there is no other layout available
if layout not in (True,):
raise RuntimeError(
f"layout={layout} is only available for torch>=v2.4"
)

def nest(*x):
return torch.nested.nested_tensor(list(x))

else:

def nest(*x):
return torch.nested.nested_tensor(list(x), layout=layout)

return out_splits[0]._fast_apply(
nest,
Expand Down
9 changes: 4 additions & 5 deletions torchrl/data/tensor_specs.py
Original file line number Diff line number Diff line change
Expand Up @@ -3982,7 +3982,7 @@ def encode(
if isinstance(vals, TensorDict):
out = vals.empty() # create and empty tensordict similar to vals
else:
out = TensorDict({}, torch.Size([]), _run_checks=False)
out = TensorDict._new_unsafe({}, torch.Size([]))
for key, item in vals.items():
if item is None:
raise RuntimeError(
Expand Down Expand Up @@ -4047,13 +4047,12 @@ def rand(self, shape=None) -> TensorDictBase:
for key, item in self.items():
if item is not None:
_dict[key] = item.rand(shape)
return TensorDict(
# No need to run checks since we know Composite is compliant with
# TensorDict requirements
return TensorDict._new_unsafe(
_dict,
batch_size=torch.Size([*shape, *self.shape]),
device=self._device,
# No need to run checks since we know Composite is compliant with
# TensorDict requirements
_run_checks=False,
)

def keys(
Expand Down
8 changes: 4 additions & 4 deletions torchrl/envs/gym_like.py
Original file line number Diff line number Diff line change
Expand Up @@ -343,8 +343,9 @@ def _step(self, tensordict: TensorDictBase) -> TensorDictBase:
for key, val in TensorDict(obs_dict, []).items(True, True)
)
else:
tensordict_out = TensorDict(
obs_dict, batch_size=tensordict.batch_size, _run_checks=False
tensordict_out = TensorDict._new_unsafe(
obs_dict,
batch_size=tensordict.batch_size,
)
if self.device is not None:
tensordict_out = tensordict_out.to(self.device, non_blocking=True)
Expand Down Expand Up @@ -377,10 +378,9 @@ def _reset(

source = self.read_obs(obs)

tensordict_out = TensorDict(
tensordict_out = TensorDict._new_unsafe(
source=source,
batch_size=self.batch_size,
_run_checks=not self.validated,
)
if self.info_dict_reader and info is not None:
for info_dict_reader in self.info_dict_reader:
Expand Down
9 changes: 3 additions & 6 deletions torchrl/envs/libs/brax.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ def _reset(self, tensordict: TensorDictBase = None, **kwargs) -> TensorDictBase:
state["reward"] = state.get("reward").view(*self.reward_spec.shape)
state["done"] = state.get("done").view(*self.reward_spec.shape)
done = state["done"].bool()
tensordict_out = TensorDict(
tensordict_out = TensorDict._new_unsafe(
source={
"observation": state.get("obs"),
# "reward": reward,
Expand All @@ -331,7 +331,6 @@ def _reset(self, tensordict: TensorDictBase = None, **kwargs) -> TensorDictBase:
},
batch_size=self.batch_size,
device=self.device,
_run_checks=False,
)
return tensordict_out

Expand All @@ -357,7 +356,7 @@ def _step_without_grad(self, tensordict: TensorDictBase):
next_state.set("done", next_state.get("done").view(self.reward_spec.shape))
done = next_state["done"].bool()
reward = next_state["reward"]
tensordict_out = TensorDict(
tensordict_out = TensorDict._new_unsafe(
source={
"observation": next_state.get("obs"),
"reward": reward,
Expand All @@ -367,7 +366,6 @@ def _step_without_grad(self, tensordict: TensorDictBase):
},
batch_size=self.batch_size,
device=self.device,
_run_checks=False,
)
return tensordict_out

Expand Down Expand Up @@ -396,7 +394,7 @@ def _step_with_grad(self, tensordict: TensorDictBase):
next_state.get("pipeline_state").update(dict(zip(qp_keys, next_qp_values)))

# build result
tensordict_out = TensorDict(
tensordict_out = TensorDict._new_unsafe(
source={
"observation": next_obs,
"reward": next_reward,
Expand All @@ -406,7 +404,6 @@ def _step_with_grad(self, tensordict: TensorDictBase):
},
batch_size=self.batch_size,
device=self.device,
_run_checks=False,
)
return tensordict_out

Expand Down
3 changes: 1 addition & 2 deletions torchrl/objectives/sac.py
Original file line number Diff line number Diff line change
Expand Up @@ -632,15 +632,14 @@ def _actor_loss(
@property
@_cache_values
def _cached_target_params_actor_value(self):
return TensorDict(
return TensorDict._new_unsafe(
{
"module": {
"0": self.target_actor_network_params,
"1": self.target_value_network_params,
}
},
torch.Size([]),
_run_checks=False,
)

def _qvalue_v1_loss(
Expand Down
Loading