Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow to_hetero_with_bases to be applied on static graphs #8247

Merged
merged 7 commits into from
Oct 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Added

- Added support for `to_hetero_with_bases` on static graphs ([#8247](https://github.com/pyg-team/pytorch_geometric/pull/8247))
- Added the `RCDD` dataset ([#8196](https://github.com/pyg-team/pytorch_geometric/pull/8196))
- Added distributed `GAT + ogbn-products` example targeting XPU device ([#8032](https://github.com/pyg-team/pytorch_geometric/pull/8032))
- Added the option to skip explanations of certain message passing layers via `conv.explain = False` ([#8216](https://github.com/pyg-team/pytorch_geometric/pull/8216))
Expand Down
6 changes: 2 additions & 4 deletions test/nn/test_to_hetero_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -520,10 +520,8 @@ def test_to_hetero_on_static_graphs():
'author': torch.randn(4, 100, 16),
}
edge_index_dict = {
('paper', 'written_by', 'author'):
torch.randint(100, (2, 200), dtype=torch.long),
('author', 'writes', 'paper'):
torch.randint(100, (2, 200), dtype=torch.long),
('paper', 'written_by', 'author'): torch.randint(100, (2, 200)),
('author', 'writes', 'paper'): torch.randint(100, (2, 200)),
}

metadata = list(x_dict.keys()), list(edge_index_dict.keys())
Expand Down
21 changes: 21 additions & 0 deletions test/nn/test_to_hetero_with_bases_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,3 +293,24 @@ def test_to_hetero_with_bases_validate():

with pytest.warns(UserWarning, match="letters, numbers and underscores"):
model = to_hetero_with_bases(model, metadata, num_bases=4, debug=False)


def test_to_hetero_with_bases_on_static_graphs():
x_dict = {
'paper': torch.randn(4, 100, 16),
'author': torch.randn(4, 100, 16),
}
edge_index_dict = {
('paper', 'written_by', 'author'): torch.randint(100, (2, 200)),
('author', 'writes', 'paper'): torch.randint(100, (2, 200)),
}

metadata = list(x_dict.keys()), list(edge_index_dict.keys())
model = to_hetero_with_bases(Net4(), metadata, num_bases=4,
in_channels={'x0': 16}, debug=False)

out_dict = model(x_dict, edge_index_dict)

assert len(out_dict) == 2
assert out_dict['paper'].size() == (4, 100, 32)
assert out_dict['author'].size() == (4, 100, 32)
18 changes: 9 additions & 9 deletions torch_geometric/nn/to_hetero_with_bases_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,15 +324,15 @@ def __init__(self, module: MessagePassing, num_relations: int,
# to a materialization of messages.
def hook(module, inputs, output):
assert isinstance(module._edge_type, Tensor)
if module._edge_type.size(0) != output.size(0):
if module._edge_type.size(0) != output.size(-2):
raise ValueError(
f"Number of messages ({output.size(0)}) does not match "
f"with the number of original edges "
f"({module._edge_type.size(0)}). Does your message "
f"passing layer create additional self-loops? Try to "
f"remove them via 'add_self_loops=False'")
weight = module.edge_type_weight.view(-1)[module._edge_type]
weight = weight.view([-1] + [1] * (output.dim() - 1))
weight = weight.view([1] * (output.dim() - 2) + [-1, 1])
return weight * output

params = list(module.parameters())
Expand Down Expand Up @@ -415,7 +415,7 @@ def get_node_offset_dict(
out: Dict[NodeType, int] = {}
for key in type2id.keys():
out[key] = cumsum
cumsum += input_dict[key].size(0)
cumsum += input_dict[key].size(-2)
return out


Expand All @@ -433,7 +433,7 @@ def get_edge_offset_dict(
elif value.dtype == torch.long and value.size(0) == 2:
cumsum += value.size(-1)
else:
cumsum += value.size(0)
cumsum += value.size(-2)
return out


Expand All @@ -458,7 +458,7 @@ def get_edge_type(
out = torch.full((value.nnz(), ), i, dtype=torch.long,
device=value.device())
else:
out = value.new_full((value.size(0), ), i, dtype=torch.long)
out = value.new_full((value.size(-2), ), i, dtype=torch.long)
outs.append(out)

return outs[0] if len(outs) == 1 else torch.cat(outs, dim=0)
Expand All @@ -474,7 +474,7 @@ def group_node_placeholder(input_dict: Dict[NodeType, Tensor],
type2id: Dict[NodeType, int]) -> Tensor:

inputs = [input_dict[key] for key in type2id.keys()]
return inputs[0] if len(inputs) == 1 else torch.cat(inputs, dim=0)
return inputs[0] if len(inputs) == 1 else torch.cat(inputs, dim=-2)


def group_edge_placeholder(
Expand Down Expand Up @@ -528,7 +528,7 @@ def group_edge_placeholder(
return torch.stack([row, col], dim=0)

else:
return torch.cat(inputs, dim=0)
return torch.cat(inputs, dim=-2)


###############################################################################
Expand All @@ -542,9 +542,9 @@ def split_output(
offset_dict: Union[Dict[NodeType, int], Dict[EdgeType, int]],
) -> Union[Dict[NodeType, Tensor], Dict[EdgeType, Tensor]]:

cumsums = list(offset_dict.values()) + [output.size(0)]
cumsums = list(offset_dict.values()) + [output.size(-2)]
sizes = [cumsums[i + 1] - cumsums[i] for i in range(len(offset_dict))]
outputs = output.split(sizes)
outputs = output.split(sizes, dim=-2)
return {key: output for key, output in zip(offset_dict, outputs)}


Expand Down