Skip to content

Commit

Permalink
[pre-commit.ci] auto fixes from pre-commit.com hooks
Browse files Browse the repository at this point in the history
for more information, see https://pre-commit.ci
  • Loading branch information
pre-commit-ci[bot] committed Jan 26, 2024
1 parent 6563f66 commit f63f43d
Show file tree
Hide file tree
Showing 6 changed files with 28 additions and 29 deletions.
12 changes: 6 additions & 6 deletions examples/contrib/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@

This directory contains examples demonstrating the use of `torch_geometric.contrib` package. The `contrib` package of PyTorch Geometric is a staging area for early-stage, experimental code. Modules included here might be moved to the main library in the future.

| Example | Description |
| ----------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
| [`rbcd_attack_poisoning.py`](./rbcd_attack_poisoning.py) | Demonstrates the RBCD (Resource-Based Critical Data) attack with data poisoning strategies. |
| [`pgm_explainer_node_classification.py`](./pgm_explainer_node_classification.py) | Showcases the PGM (Probabilistic Graphical Model) Explainer for node classification tasks. |
| [`rbcd_attack.py`](./rbcd_attack.py) | Provides an example of an RBCD attack in network settings. |
| [`pgm_explainer_graph_classification.py`](./pgm_explainer_graph_classification.py) | Details the application of the PGM Explainer for graph classification. |
| Example | Description |
| ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- |
| [`rbcd_attack_poisoning.py`](./rbcd_attack_poisoning.py) | Demonstrates the RBCD (Resource-Based Critical Data) attack with data poisoning strategies. |
| [`pgm_explainer_node_classification.py`](./pgm_explainer_node_classification.py) | Showcases the PGM (Probabilistic Graphical Model) Explainer for node classification tasks. |
| [`rbcd_attack.py`](./rbcd_attack.py) | Provides an example of an RBCD attack in network settings. |
| [`pgm_explainer_graph_classification.py`](./pgm_explainer_graph_classification.py) | Details the application of the PGM Explainer for graph classification. |
2 changes: 1 addition & 1 deletion examples/distributed/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,4 @@
This directory contains examples for distributed graph learning. The examples are organized into two subdirectories:

1. `graphlearn_for_pytorch`: Using GraphLearn-for-PyTorch (GLT) for Distributed Training with PyG.
2. `pyg`: Distributed graph learning with PyG's `distributed` package.
1. `pyg`: Distributed graph learning with PyG's `distributed` package.
17 changes: 8 additions & 9 deletions examples/explain/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,11 @@

This directory contains examples demonstrating the use of `torch_geometric.explain` package. The `explain` package of PyTorch Geometric provides a set of tools to explain the predictions of a PyG model or to explain the underlying phenomenon of a dataset.

| Example | Description |
| -------------------------------------------------- | --------------------------------------------------------------------------------------------- |
| [`captum_explainer.py`](./captum_explainer.py) | Demonstrates the use of Captum-based explainer for explaining Graph Neural Networks (GNN) model in node classification. |
| [`captum_explainer_hetero_link.py`](./captum_explainer_hetero_link.py) | Demonstrates the use of Captum-based explainer for explaining GNN model in heterogenous link prediction. |
| [`gnn_explainer.py`](./gnn_explainer.py) | Shows GNNExplainer applied to the Cora dataset for understanding GNN model. |
| [`gnn_explainer_ba_shapes.py`](./gnn_explainer_ba_shapes.py) | Shows GNNExplainer applied to the BA-Shapes dataset for understanding GNN model. |
| [`gnn_explainer_link_pred.py`](./gnn_explainer_link_pred.py) | Demonstrates the use of GNNExplainer for explaining GNN model in link prediction. |
| [`graphmask_explainer.py`](./graphmask_explainer.py) | Demonstrates the use of GraphMask-Explainer for explaining GNN model in node classification. |

| Example | Description |
| ---------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- |
| [`captum_explainer.py`](./captum_explainer.py) | Demonstrates the use of Captum-based explainer for explaining Graph Neural Networks (GNN) model in node classification. |
| [`captum_explainer_hetero_link.py`](./captum_explainer_hetero_link.py) | Demonstrates the use of Captum-based explainer for explaining GNN model in heterogenous link prediction. |
| [`gnn_explainer.py`](./gnn_explainer.py) | Shows GNNExplainer applied to the Cora dataset for understanding GNN model. |
| [`gnn_explainer_ba_shapes.py`](./gnn_explainer_ba_shapes.py) | Shows GNNExplainer applied to the BA-Shapes dataset for understanding GNN model. |
| [`gnn_explainer_link_pred.py`](./gnn_explainer_link_pred.py) | Demonstrates the use of GNNExplainer for explaining GNN model in link prediction. |
| [`graphmask_explainer.py`](./graphmask_explainer.py) | Demonstrates the use of GraphMask-Explainer for explaining GNN model in node classification. |
10 changes: 5 additions & 5 deletions examples/jit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@

This directory contains examples demonstrating the use of Just-In-Time (JIT) compilation in different Graph Neural Network (GNN) models.

| Example | Description |
| ---------------------- | ----------------------------------------------------------------------------------------------- |
| Example | Description |
| ---------------------- | ---------------------------------------------------------------------------------------- |
| [`film.py`](./film.py) | Demonstrates the use of JIT compilation in [GNN-FiLM](https://arxiv.org/abs/1906.12192). |
| [`gat.py`](./gat.py) | Demonstrates the use of JIT compilation in GAT. |
| [`gcn.py`](./gcn.py) | Demonstrates the use of JIT compilation in GCN. |
| [`gin.py`](./gin.py) | Demonstrates the use of JIT compilation in GIN. |
| [`gat.py`](./gat.py) | Demonstrates the use of JIT compilation in GAT. |
| [`gcn.py`](./gcn.py) | Demonstrates the use of JIT compilation in GCN. |
| [`gin.py`](./gin.py) | Demonstrates the use of JIT compilation in GIN. |
6 changes: 3 additions & 3 deletions examples/pytorch_ignite/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,6 @@

This directory demonstrates the application of PyTorch Ignite in the context of Graph Neural Networks (GNNs).

| Example | Description |
| ------------------------------------ | ------------------------------------------------------------------------------------------------- |
| [`gin.py`](./gin.py) | This script demonstrates how to implement the Graph Isomorphism Network (GIN) model using PyTorch Ignite. |
| Example | Description |
| -------------------- | --------------------------------------------------------------------------------------------------------- |
| [`gin.py`](./gin.py) | This script demonstrates how to implement the Graph Isomorphism Network (GIN) model using PyTorch Ignite. |
10 changes: 5 additions & 5 deletions examples/pytorch_lightning/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@

This directory provides examples showcasing the integration of PyTorch Geometric with [PyTorch Lightning](https://github.com/Lightning-AI/pytorch-lightning).

| Example | Description |
| ------------------------------------ | ------------------------------------------------------------------------------------------------- |
| [`gin.py`](./gin.py) | Demonstrates how to combine PyTorch Geometric and PyTorch Lightning for implementing the Graph Isomorphism Network (GIN) model. |
| [`graph_sage.py`](./graph_sage.py) | Demonstrates how to combine PyTorch Geometric and PyTorch Lightning for implementing the GraphSAGE model, suitable for scalable graph-structured data processing. |
| [`relational_gnn.py`](./relational_gnn.py) | Demonstrates the use of PyTorch Geometric and PyTorch Lightning for building a Relational Graph Neural Network, emphasizing handling relational data in graphs. |
| Example | Description |
| ------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`gin.py`](./gin.py) | Demonstrates how to combine PyTorch Geometric and PyTorch Lightning for implementing the Graph Isomorphism Network (GIN) model. |
| [`graph_sage.py`](./graph_sage.py) | Demonstrates how to combine PyTorch Geometric and PyTorch Lightning for implementing the GraphSAGE model, suitable for scalable graph-structured data processing. |
| [`relational_gnn.py`](./relational_gnn.py) | Demonstrates the use of PyTorch Geometric and PyTorch Lightning for building a Relational Graph Neural Network, emphasizing handling relational data in graphs. |

0 comments on commit f63f43d

Please sign in to comment.