-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
We added implementation of OGC method from the paper [From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited](https://arxiv.org/abs/2309.13599). With only one trainable layer, OGC is a very simple but powerful graph convolution method. **Table 1: Node classification accuracy (%).** | Acc | CiteSeer | Cora | PubMed | | :-------: | :------: | :--: | :----: | | GCN (PyG) | 71.0 | 82.1 | 78.8 | | GCN2 (PyG) | - | 85.4 | - | | OGC (PyG) | 77.4 | **86.9** | **83.7** | | OGC (Reported) | **77.5** | **86.9** | 83.4 | **Table 2: Running time (s).** | Time | CiteSeer | Cora | PubMed | | :-------: | :------: | :--: | :----: | | GCN (PyG) | 18.5 | 7.86 | 24.7 | | GCN2 (PyG) | - | 984 | - | | OGC (PyG) | **3.76** | **1.53** | **2.92** | For comparison, we use PyG's build-in datasets and codes. As shown above, OGC has a substantial improvement, with 650X high efficiency compared to SOTA deep GNNs. We are very happy to further improve the code for this great project, and will continue to contribute actively! Author: [Yun Xu](https://github.com/xYix) (undergraduate, @sjtu) advised by [Dr. Zheng Wang@SJTU](https://zhengwang100.github.io/). --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: rusty1s <[email protected]>
- Loading branch information
1 parent
4d280f5
commit e9f62c0
Showing
2 changed files
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
# The OGC method from the "From Cluster Assumption to Graph Convolution: | ||
# Graph-based Semi-Supervised Learning Revisited" paper. | ||
# ArXiv: https://arxiv.org/abs/2309.13599 | ||
|
||
# Datasets CiteSeer Cora PubMed | ||
# Acc 0.774 0.869 0.837 | ||
# Time 3.76 1.53 2.92 | ||
|
||
import argparse | ||
import os.path as osp | ||
import time | ||
import warnings | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from torch import Tensor | ||
|
||
import torch_geometric.transforms as T | ||
from torch_geometric.data import Data | ||
from torch_geometric.datasets import Planetoid | ||
from torch_geometric.utils import one_hot | ||
|
||
warnings.filterwarnings('ignore', '.*Sparse CSR tensor support.*') | ||
|
||
decline = 0.9 # decline rate | ||
eta_sup = 0.001 # learning rate for supervised loss | ||
eta_W = 0.5 # learning rate for updating W | ||
beta = 0.1 # moving probability that a node moves to neighbors | ||
max_sim_tol = 0.995 # max label prediction similarity between iterations | ||
max_patience = 2 # tolerance for consecutive similar test predictions | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--dataset', type=str, default='Cora') | ||
args = parser.parse_args() | ||
|
||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Planetoid') | ||
|
||
transform = T.Compose([ | ||
T.NormalizeFeatures(), | ||
T.GCNNorm(), | ||
T.ToSparseTensor(layout=torch.sparse_csr), | ||
]) | ||
dataset = Planetoid(path, name=args.dataset, transform=transform) | ||
data = dataset[0].to(device) | ||
|
||
y_one_hot = one_hot(data.y, dataset.num_classes) | ||
data.trainval_mask = data.train_mask | data.val_mask | ||
# LIM track, else use trainval_mask to construct S | ||
S = torch.diag(data.train_mask).float().to_sparse() | ||
I_N = torch.eye(data.num_nodes).to_sparse(layout=torch.sparse_csr).to(device) | ||
|
||
# Lazy random walk (also known as lazy graph convolution): | ||
lazy_adj = beta * data.adj_t + (1 - beta) * I_N | ||
|
||
|
||
class LinearNeuralNetwork(torch.nn.Module): | ||
def __init__(self, num_features: int, num_classes: int, bias: bool = True): | ||
super().__init__() | ||
self.W = torch.nn.Linear(num_features, num_classes, bias=bias) | ||
|
||
def forward(self, x: Tensor) -> Tensor: | ||
return self.W(x) | ||
|
||
@torch.no_grad() | ||
def test(self, U: Tensor, y_one_hot: Tensor, data: Data): | ||
self.eval() | ||
out = self(U) | ||
|
||
loss = F.mse_loss( | ||
out[data.trainval_mask], | ||
y_one_hot[data.trainval_mask], | ||
) | ||
|
||
accs = [] | ||
pred = out.argmax(dim=-1) | ||
for _, mask in data('trainval_mask', 'test_mask'): | ||
accs.append(float((pred[mask] == data.y[mask]).sum() / mask.sum())) | ||
|
||
return float(loss), accs[0], accs[1], pred | ||
|
||
def update_W(self, U: Tensor, y_one_hot: Tensor, data: Data): | ||
optimizer = torch.optim.SGD(self.parameters(), lr=eta_W) | ||
self.train() | ||
optimizer.zero_grad() | ||
pred = self(U) | ||
loss = F.mse_loss(pred[data.trainval_mask], y_one_hot[ | ||
data.trainval_mask, | ||
], reduction='sum') | ||
loss.backward() | ||
optimizer.step() | ||
return self(U).data, self.W.weight.data | ||
|
||
|
||
model = LinearNeuralNetwork( | ||
num_features=dataset.num_features, | ||
num_classes=dataset.num_classes, | ||
bias=False, | ||
).to(device) | ||
|
||
|
||
def update_U(U: Tensor, y_one_hot: Tensor, pred: Tensor, W: Tensor): | ||
global eta_sup | ||
|
||
# Update the smoothness loss via LGC: | ||
U = lazy_adj @ U | ||
|
||
# Update the supervised loss via SEB: | ||
dU_sup = 2 * (S @ (-y_one_hot + pred)) @ W | ||
U = U - eta_sup * dU_sup | ||
|
||
eta_sup = eta_sup * decline | ||
return U | ||
|
||
|
||
def ogc() -> float: | ||
U = data.x | ||
_, _, last_acc, last_pred = model.test(U, y_one_hot, data) | ||
|
||
patience = 0 | ||
for i in range(1, 65): | ||
# Updating W by training a simple linear neural network: | ||
pred, W = model.update_W(U, y_one_hot, data) | ||
|
||
# Updating U by LGC and SEB jointly: | ||
U = update_U(U, y_one_hot, pred, W) | ||
|
||
loss, trainval_acc, test_acc, pred = model.test(U, y_one_hot, data) | ||
print(f'Epoch: {i:02d}, Loss: {loss:.4f}, ' | ||
f'Train+Val Acc: {trainval_acc:.4f} Test Acc {test_acc:.4f}') | ||
|
||
sim_rate = float((pred == last_pred).sum()) / pred.size(0) | ||
if (sim_rate > max_sim_tol): | ||
patience += 1 | ||
if (patience > max_patience): | ||
break | ||
|
||
last_acc, last_pred = test_acc, pred | ||
|
||
return last_acc | ||
|
||
|
||
start_time = time.time() | ||
test_acc = ogc() | ||
print(f'Test Accuracy: {test_acc:.4f}') | ||
print(f'Total Time: {time.time() - start_time:.4f}s') |