Skip to content

ppriyank/Pytorch-Additive_Margin_Softmax_for_Face_Verification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 

Repository files navigation

Pytorch-Additive_Margin_Softmax_for_Face_Verification

Pytorch Implementation of AMSoftmax with label smooting

Additive Margin Softmax for Face Verification
Feng Wang, Weiyang Liu, Haijun Liu, Jian Cheng
https://arxiv.org/pdf/1801.05599.pdf

from AM_Softmax import AM_Softmax_v1 , AM_Softmax_v2
features = Model(input)
criterion_xent = AM_Softmax_v1()
Loss = criterion_xent(features, labels)

or

criterion_xent = AM_Softmax_v2()
Loss = criterion_xent(features ,  labels, model.module.classifier )

[Only for V_1] Since weights are in Loss function only, add these to the model optimizer as well.

for key, value in criterion_xent.named_parameters():
    params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
    
optimizer = torch.optim.Adam(params)

If you don't want label smoothing : remove the line targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes

About

Pytorch Implementation of AMSoftmax

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages