Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support all static tensor shapes in EvalSlice folder #2557

Merged
merged 1 commit into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 33 additions & 11 deletions stablehlo/tests/transforms/stablehlo_refine_shapes.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -433,17 +433,25 @@ func.func @eval_sign() -> tensor<3xi64> {
// -----

// CHECK-LABEL: func @eval_slice
func.func @eval_slice() -> tensor<2xi64> {
func.func @eval_slice() -> (tensor<2xi64>, tensor<1x2x1xi64>) {
// CHECK-NOT: stablehlo.slice
// CHECK: [[RESULT:%.*]] = stablehlo.constant dense<[1, 2]> : tensor<2xi64>
// CHECK: return [[RESULT]]
// CHECK: [[RESULT1:%.*]] = stablehlo.constant dense<[1, 2]> : tensor<2xi64>
// CHECK: [[RESULT2:%.*]] = stablehlo.constant dense<{{\[\[}}[15], [19]]]> : tensor<1x2x1xi64>
// CHECK: return [[RESULT1]], [[RESULT2]]
%0 = stablehlo.constant dense<[1, 2, 3, 4]> : tensor<4xi64>
%1 = "stablehlo.slice"(%0) {
start_indices = array<i64: 0>,
limit_indices = array<i64: 2>,
strides = array<i64: 1>
} : (tensor<4xi64>) -> tensor<2xi64>
func.return %1 : tensor<2xi64>
%2 = stablehlo.constant dense<[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]],
[[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]> : tensor<2x3x4xi64>
%3 = "stablehlo.slice"(%2) {
start_indices = array<i64: 0, 1, 1>,
limit_indices = array<i64: 2, 3, 3>,
strides = array<i64: 3, 1, 2>
} : (tensor<2x3x4xi64>) -> tensor<1x2x1xi64>
func.return %1, %3 : tensor<2xi64>, tensor<1x2x1xi64>
}

// -----
Expand Down Expand Up @@ -496,18 +504,32 @@ func.func @eval_slice_unit_prefix() -> (tensor<1x1x1x2xi64>, tensor<1x1x1x2xi64>

// -----

// CHECK-LABEL: func @eval_slice_non_unit_prefix
func.func @eval_slice_non_unit_prefix() -> tensor<1x2x1xi64> {
// CHECK: stablehlo.constant {{.*}} : tensor<1x2x2xi64>
// CHECK: [[RESULT:%.*]] = stablehlo.slice{{.*}}
// CHECK-LABEL: func @eval_slice_zerodim
func.func @eval_slice_zerodim() -> tensor<0x2x1xi64> {
// CHECK: [[RESULT:%.*]] = stablehlo.constant dense<> : tensor<0x2x1xi64>
// CHECK: return [[RESULT]]
%0 = stablehlo.constant dense<[[[1, 2], [3, 4]]]> : tensor<1x2x2xi64>
%1 = "stablehlo.slice"(%0) {
start_indices = array<i64: 0, 0, 1>,
start_indices = array<i64: 1, 0, 1>,
limit_indices = array<i64: 1, 2, 2>,
strides = array<i64: 1, 1, 1>
} : (tensor<1x2x2xi64>) -> tensor<1x2x1xi64>
func.return %1 : tensor<1x2x1xi64>
} : (tensor<1x2x2xi64>) -> tensor<0x2x1xi64>
func.return %1 : tensor<0x2x1xi64>
}

// -----

// CHECK-LABEL: func @eval_slice_zerorank
func.func @eval_slice_zerorank() -> tensor<f32> {
// CHECK: [[RESULT:%.*]] = stablehlo.constant dense<3.300000e+01> : tensor<f32>
// CHECK: return [[RESULT]]
%0 = stablehlo.constant dense<33.0> : tensor<f32>
%1 = "stablehlo.slice"(%0) {
start_indices = array<i64>,
limit_indices = array<i64>,
strides = array<i64>
} : (tensor<f32>) -> tensor<f32>
func.return %1 : tensor<f32>
}

// -----
Expand Down
79 changes: 48 additions & 31 deletions stablehlo/transforms/StablehloAggressiveFolder.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -521,6 +521,41 @@ struct EvalSignOpPattern : public OpRewritePattern<SignOp> {
}
};

template <typename RangeType>
DenseElementsAttr sliceType(SliceOp& op, const RangeType& data) {
using ElementType = std::decay_t<decltype(*std::begin(data))>;

RankedTensorType operandType = op.getOperand().getType();
RankedTensorType resultType = op.getResult().getType();

const auto dimOffsets = computeStrides(operandType.getShape());
auto startIndices = op.getStartIndices();
auto limitIndices = op.getLimitIndices();
auto strides = op.getStrides();

const SmallVector<int64_t> startIndex(startIndices);
const SmallVector<int64_t> endIndex(limitIndices);

SmallVector<ElementType> result;
result.reserve(resultType.getNumElements());

SmallVector<int64_t> srcIndex(startIndex);
for (int64_t i = 0; i < resultType.getNumElements(); ++i) {
auto srcLinearIndex = linearize(srcIndex, dimOffsets);
result.push_back(data[srcLinearIndex]);
for (int64_t dim = srcIndex.size() - 1; dim >= 0; --dim) {
srcIndex[dim] += strides[dim];
if (srcIndex[dim] >= endIndex[dim])
srcIndex[dim] = startIndex[dim];
else
break;
}
}

return DenseElementsAttr::get(op.getResult().getType(),
ArrayRef<ElementType>(result));
}

struct EvalSliceOpPattern : public OpRewritePattern<SliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(SliceOp op,
Expand All @@ -529,45 +564,27 @@ struct EvalSliceOpPattern : public OpRewritePattern<SliceOp> {
if (failed(validateResultTypeForEval(rewriter, op, resultType)))
return failure();

if (resultType.getRank() < 1)
return rewriter.notifyMatchFailure(
op, "expected non-0 ranked tensor result type");

auto operand = cast<TypedValue<RankedTensorType>>(op.getOperand());
auto operand = op.getOperand();
RankedTensorType operandType = operand.getType();
if (!operandType.hasStaticShape())
return rewriter.notifyMatchFailure(
op, "expected operand with static ranked tensor type");

// A ranked tensor type with unit dimension prefix of R-1 size is physically
// compatible with 1-dimensional type.
if (!llvm::all_of(resultType.getShape().drop_back(),
[](int64_t s) { return s == 1; }))
ElementsAttr els;
if (!matchPattern(operand, m_Constant(&els)))
return rewriter.notifyMatchFailure(
op, "expected 1-dimensional compatible result type");

SmallVector<APSInt> operandData;
if (failed(hlo::matchInts(operand, operandData)))
return rewriter.notifyMatchFailure(op, "expected constant operand");

const auto dimOffsets = computeSuffixProduct(operandType.getShape());
auto startIndices = op.getStartIndices();
auto limitIndices = op.getLimitIndices();
auto strides = op.getStrides();

int64_t start = 0;
for (size_t i = 0; i < startIndices.size(); ++i)
start += startIndices[i] * dimOffsets[i];
op, "expected constant integer or float operand");

auto slicedDim = operandType.getRank() - 1;
int64_t limit = start + limitIndices[slicedDim] - startIndices[slicedDim];
int64_t stride = strides[slicedDim];
SmallVector<APSInt> result;
for (auto i = start; i < limit; i += stride)
result.push_back(operandData[i]);
DenseElementsAttr resAttr;
if (auto data = els.tryGetValues<APInt>())
resAttr = sliceType(op, *data);
else if (auto data = els.tryGetValues<APFloat>())
resAttr = sliceType(op, *data);
else
return rewriter.notifyMatchFailure(op.getLoc(),
"unsupported element type");

rewriter.replaceOpWithNewOp<ConstantOp>(op,
getTensorAttr(resultType, result));
rewriter.replaceOpWithNewOp<ConstantOp>(op, resAttr);
return success();
}
};
Expand Down
Loading