-
Notifications
You must be signed in to change notification settings - Fork 120
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add interpreter for ConvolutionOp #1964
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Took a quick look, will let someone else do a full review.
This was referenced Mar 14, 2024
GleasonK
approved these changes
Mar 27, 2024
This was referenced Apr 16, 2024
ghpvnist
added a commit
that referenced
this pull request
Apr 18, 2024
ghpvnist
added a commit
that referenced
this pull request
Apr 23, 2024
This is part 3 of #1964 to implement the remaining parts of #1314. One notable change in TypeInference.cpp is (C27), whose verification differs whether element type is quantized. We have the following constraints in the spec (excluding quantization-related constraints C28-C33): ``` (I1) `lhs` tensor. (I2) `rhs` tensor. (I3) `window_strides` 1-dimensional tensor constant of type `si64`. (I4) `padding` 2-dimensional tensor constant of type `si64`. (I5) `lhs_dilation` 1-dimensional tensor constant of type `si64`. (I6) `rhs_dilation` 1-dimensional tensor constant of type `si64`. (I7) `window_reversal` 1-dimensional tensor constant of type `i1`. (I8) `input_batch_dimension` constant of type `si64`. (I9) `input_feature_dimension` constant of type `si64`. (I10) `input_spatial_dimensions` 1-dimensional tensor constant of type `si64`. (I11) `kernel_input_feature_dimension` constant of type `si64`. (I12) `kernel_output_feature_dimension` constant of type `si64`. (I13) `kernel_spatial_dimensions` 1-dimensional tensor constant of type `si64`. (I14) `output_batch_dimension` constant of type `si64`. (I15) `output_feature_dimension` constant of type `si64`. (I16) `output_spatial_dimensions` 1-dimensional tensor constant of type `si64`. (I17) `feature_group_count` constant of type `si64`. (I18) `batch_group_count` constant of type `si64`. (I19) `precision_config` variadic number of enums of `DEFAULT`, `HIGH`, and `HIGHEST`. (C1) `N = rank(lhs) = rank(rhs)`. (C2) `size(window_strides) = N - 2`. (C3) `0 < window_strides`. (C4) `shape(padding) = [N - 2, 2]`. (C5) `size(lhs_dilation) = N - 2`. (C6) `0 < lhs_dilation`. (C7) `size(rhs_dilation) = N - 2`. (C8) `0 < rhs_dilation`. (C9) `size(window_reversal) = N - 2`. (C10) `dim(lhs, input_batch_dimension) % batch_group_count = 0`. (C11) `dim(lhs, input_feature_dimension) % feature_group_count = 0`. (C12) `size(input_spatial_dimensions) = N - 2`. (C13) Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * `is_unique(input_dimensions)`. * `0 <= input_dimensions < N`. (C14) `dim(rhs, kernel_input_feature_dimension = dim(lhs, input_feature_dimension) / feature_group_count`. (C15) `dim(rhs, kernel_output_feature_dimension) % batch_group_count = 0`. (C16) `dim(rhs, kernel_output_feature_dimension) % feature_group_count = 0`. (C17) `size(kernel_spatial_dimensions) = N - 2`. (C18) Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * `is_unique(kernel_dimensions)`. * `0 <= kernel_dimensions < N`. (C19) `size(output_spatial_dimensions) = N - 2`. (C20) Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * `is_unique(output_dimensions)`. * `0 <= output_dimensions < N`. (C21) `0 < feature_group_count`. (C22) `0 < batch_group_count`. (C23) `feature_group_count = 1 or batch_group_count = 1`. (C24) `size(precision_config) = 2`. (C25) `dim(result, result_dim)` is defined as: * `dim(lhs, input_batch_dimension) / batch_group_count` if `result_dim = output_batch_dimension`. * `dim(rhs, kernel_output_feature_dimension)` if `result_dim = output_feature_dimension`. * `num_windows` otherwise, where: * `output_spatial_dimensions[spatial_dim] = result_dim`. * `lhs_dim = input_spatial_dimensions[spatial_dim]`. * `rhs_dim = kernel_spatial_dimensions[spatial_dim]`. * `dilated_input_shape[lhs_dim] = dim(lhs, lhs_dim) = 0 ? 0 : (dim(lhs, lhs_dim) - 1) * lhs_dilation[spatial_dim] + 1`. * `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`. * `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) = 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`. * `is_empty_window[lhs_dim] = padded_input_shape[lhs_dim] = 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]`. * `num_windows = is_empty_window[lhs_dim] ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`. (C26) `rank(result) = N`. (C27) `element_type(lhs) = element_type(rhs) = element_type(result)`. ``` These constraints will be comprehensively covered by the following tests: ``` I1: a) `lhs` tensor. (Covered by ODS). I2: a) `rhs` tensor. (Covered by ODS). I3: a) `window_strides` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`window_strides`) != `si64`. (Covered by ODS). I4: a) `padding` is not a 2-dimensional tensor. b) element_type(`padding`) != `si64`. (Covered by ODS). I5: a) `lhs_dilation` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`lhs_dilation`) != `si64`. (Covered by ODS). I6: a) `rhs_dilation` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`rhs_dilation`) != `si64`. (Covered by ODS). I7: a) `window_reversal` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`window_reversal`) != `i1`. (Covered by ODS). I8: a) element_type(`input_batch_dimension`) != `si64`. (Covered by ODS). I9: a) element_type(`input_feature_dimension`) != `si64`. (Covered by ODS). I10: a) `input_spatial_dimensions` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`input_spatial_dimensions`) != `si64`. (Covered by ODS). I11: a) element_type(`kernel_input_feature_dimension`) != `si64`. (Covered by ODS). I12: a) element_type(`kernel_output_feature_dimension`) != `si64`. (Covered by ODS). I13: a) `kernel_spatial_dimensions` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`kernel_spatial_dimensions`) != `si64`. (Covered by ODS). I14: a) element_type(`output_batch_dimension`) != `si64`. (Covered by ODS). I15: a) element_type(`output_feature_dimension`) != `si64`. (Covered by ODS). I16: a) `output_spatial_dimensions` is not a 1-dimensional tensor. (Covered by ODS). b) element_type(`output_spatial_dimensions`) != `si64`. (Covered by ODS). I17: a) element_type(`feature_group_count`) != `si64`. (Covered by ODS). I18: a) element_type(`batch_group_count`) != `si64`. (Covered by ODS). I19: a) `precision_config` does not have variadic number of enums of `DEFAULT`, `HIGH`, and `HIGHEST`. (Covered by ODS). C1: a) N = rank(`lhs`) != rank(`rhs`). C2: a) size(`window_strides`) != N - 2. C3: a) `window_strides[i]` <= 0 for any i in [0, size(`window_strides`)). C4: a) dim(`padding`, 0) != N - 2. b) dim(`padding`, 1) != 2. C5: a) size(`lhs_dilation`) != N - 2. C6: a) `lhs_dilation[i]` <= 0 for any i in [0, size(`lhs_dilation`)). C7: a) size(`rhs_dilation`) != N - 2. C8: a) `rhs_dilation[i]` <= 0 for any i in [0, size(`rhs_dilation`)). C9: a) size(`window_reversal`) != N - 2. C10: a) `dim(lhs, input_batch_dimension) % batch_group_count != 0`. C11: a) `dim(lhs, input_feature_dimension) % feature_group_count != 0`. C12: a) size(`input_spatial_dimensions`) != N - 2. C13: a) Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * Any dimensions in `input_dimensions` are not unique. b) Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * For any i in `input_dimensions`, i < 0. c) Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * For any i in `input_dimensions`, i >= N. C14: a) `dim(rhs, kernel_input_feature_dimension != dim(lhs, input_feature_dimension) / feature_group_count`. C15: a) `dim(rhs, kernel_output_feature_dimension) % batch_group_count != 0`. C16: a) `dim(rhs, kernel_output_feature_dimension) % feature_group_count != 0`. C17: a) size(`kernel_spatial_dimensions`) != N - 2. C18: a) Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * Any dimensions in `kernel_dimensions` are not unique. b) Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * For any i in$ `kernel_dimensions`, i < 0. c) Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * For any i in `kernel_dimensions`, i >= N. C19: a) size(`output_spatial_dimensions`) != N - 2. C20: a) Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * Any dimensions in `output_dimensions` are not unique. b) Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * For any i in `output_dimensions`, i < 0. c) Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * For any i in `output_dimensions`, i >= N. C21: a) `feature_group_count <= 0`. C22: a) `batch_group_count <= 0`. C23: a) `feature_group_count` != 1 and `batch_group_count` != 1. C24: a) size(`precision_config`) != 2. C25: a) For result_dim in [0, N): `dim(result, result_dim)` != `dim(lhs, input_batch_dimension) / batch_group_count`, if `result_dim = output_batch_dimension`. b) For result_dim in [0, N): `dim(result, result_dim)` != `dim(rhs, kernel_output_feature_dimension)`, if `result_dim = output_feature_dimension`. c) For result_dim in [0, N): `dim(result, result_dim)` != `num_windows` otherwise, where: * `output_spatial_dimensions[spatial_dim] = result_dim`. * `lhs_dim = input_spatial_dimensions[spatial_dim]`. * `rhs_dim = kernel_spatial_dimensions[spatial_dim]`. * `dilated_input_shape[lhs_dim] = dim(lhs, lhs_dim) == 0 ? 0 : (dim(lhs, lhs_dim) - 1) * lhs_dilation[spatial_dim] + 1`. * `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`. * `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) == 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`. * `num_windows = (padded_input_shape[lhs_dim] == 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]) ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`. C26: a) rank(result) != N. C27: a) element_type(`lhs`) != element_type(`rhs`). ``` If we drop the "Covered by ODS" pieces, this will leave us with the following test cases: ``` I4a: `padding` is not a 2-dimensional tensor. C1a: rank(`lhs`) != rank(`rhs`) != N. C2a: size(`window_strides`) != N - 2. C3a: `window_strides[i]` <= 0 for any i in [0, size(`window_strides`)). C4a: dim(`padding`, 0) != N - 2. C4b: dim(`padding`, 1) != 2. C5a: size(`lhs_dilation`) != N - 2. C6a: `lhs_dilation[i]` <= 0 for any i in [0, size(`lhs_dilation`)). C7a: size(`rhs_dilation`) != N - 2. C8a: `rhs_dilation[i]` <= 0 for any i in [0, size(`rhs_dilation`)). C9a: size(`window_reversal`) != N - 2. C10a: `dim(lhs, input_batch_dimension) % batch_group_count != 0`. C11a: `dim(lhs, input_feature_dimension) % feature_group_count != 0`. C12a: size(`input_spatial_dimensions`) != N - 2. C13a: Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * Any dimensions in `input_dimensions` are not unique. C13b: Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * For any i in `input_dimensions`, i < 0. C13c: Given `input_dimensions = [input_batch_dimension] + input_spatial_dimensions + [input_feature_dimension]`: * For any i in `input_dimensions`, i >= N. C14a: `dim(rhs, kernel_input_feature_dimension != dim(lhs, input_feature_dimension) / feature_group_count`. C15a: `dim(rhs, kernel_output_feature_dimension) % batch_group_count != 0`. C16a: `dim(rhs, kernel_output_feature_dimension) % feature_group_count != 0`. C17a: size(`kernel_spatial_dimensions`) != N - 2. C18a: Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * Any dimensions in `kernel_dimensions` are not unique. C18b: Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * For any i in$ `kernel_dimensions`, i < 0. C18c: Given `kernel_dimensions = kernel_spatial_dimensions + [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`: * For any i in `kernel_dimensions`, i >= N. C19a: size(`output_spatial_dimensions`) != N - 2. C20a: Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * Any dimensions in `output_dimensions` are not unique. b) Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * For any i in `output_dimensions`, i < 0. c) Given `output_dimensions = [output_batch_dimension] + output_spatial_dimensions + [output_feature_dimension]`: * For any i in `output_dimensions`, i >= N. C21a: `feature_group_count <= 0`. C22a: `batch_group_count <= 0`. C23a: `feature_group_count` != 1 and `batch_group_count` != 1. C24a: size(`precision_config`) != 2. C25a: For result_dim in [0, N): `dim(result, result_dim)` != `dim(lhs, input_batch_dimension) / batch_group_count`, if `result_dim = output_batch_dimension`. C25b: For result_dim in [0, N): `dim(result, result_dim)` != `dim(rhs, kernel_output_feature_dimension)`, if `result_dim = output_feature_dimension`. C25c: For result_dim in [0, N): `dim(result, result_dim)` != `num_windows` otherwise, where: * `output_spatial_dimensions[spatial_dim] = result_dim`. * `lhs_dim = input_spatial_dimensions[spatial_dim]`. * `rhs_dim = kernel_spatial_dimensions[spatial_dim]`. * `dilated_input_shape[lhs_dim] = dim(lhs, lhs_dim) == 0 ? 0 : (dim(lhs, lhs_dim) - 1) * lhs_dilation[spatial_dim] + 1`. * `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`. * `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) == 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`. * `num_windows = (padded_input_shape[lhs_dim] == 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]) ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`. C26a: rank(result) != N. C27a: element_type(`lhs`) != element_type(`rhs`). ``` Notes: * (new C24) is left untouched as there are still pending action item regarding the number of precision config values allowed in #879. closes #2092
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Since the interpreter implementation is already a mouthful, I've split #1314 to separate the implementation from the remaining checklist items. Once this is merged, I'll work on the remaining to update the rest of the docs.
closes #970