-
Notifications
You must be signed in to change notification settings - Fork 120
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
**Draft PR** Provides an API to convert stablehlo to tf saved model. Added a test to convert a simple linear model. Things to me done: - [x] Provide documentation of the API - [x] Test should used the API from the preinstalled stablehlo python package - [x] Make sure the API is provoded as part of stablehlo python wheel.
- Loading branch information
Showing
7 changed files
with
410 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
84 changes: 84 additions & 0 deletions
84
stablehlo/integrations/python/stablehlo/savedmodel/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# StableHLO to Tensorflow SavedModel | ||
|
||
`stablehlo_to_tf_saved_model.py` provides the following API to convert a | ||
stablehlo program to TensorFlow SavedModel. | ||
|
||
```python | ||
stablehlo_to_tf_saved_model( | ||
module: mlir.ir.Module, | ||
saved_model_dir: os.PathLike, | ||
input_locations: list = [], | ||
state_dict: dict = {}, | ||
) | ||
``` | ||
|
||
where | ||
|
||
* `module`: An StableHLO module. | ||
* `saved_model_dir`: Path to save TF saved-model artifacts. | ||
* `target_version`: Serialization version of StableHLO. Default: current | ||
stablehlo version. | ||
* `input_locations`: List of input argument types: either it could be a | ||
parameter with a name associated with it or a positional argument. The | ||
parameters are generally the weights or biases of a model with pre-trained | ||
constant values. Default: empty list. | ||
* `state_dict`: Mapping of named input parameters with constants. Default: | ||
empty list. | ||
|
||
For example, to export a simple | ||
[torch.nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) | ||
model to TensorFlow SavedModel using the above API, we need the following | ||
arguments to the API. | ||
|
||
* `module` | ||
|
||
```mlir | ||
module @linearmodule attributes {mhlo.cross_program_prefetches = [], mhlo.is_dynamic = false, mhlo.use_auto_spmd_partitioning = false} { | ||
func.func @main(%arg0: tensor<2xf32>, %arg1: tensor<2x2xf32>, %arg2: tensor<2x2xf32>) -> tensor<2x2xf32> { | ||
%0 = stablehlo.transpose %arg1, dims = [1, 0] {result_layout = dense<[0, 1]> : tensor<2xindex>, xla_shape = "f32[2,2]{0,1}"} : (tensor<2x2xf32>) -> tensor<2x2xf32> | ||
%1 = stablehlo.dot_general %arg2, %0, contracting_dims = [1] x [0], precision = [DEFAULT, DEFAULT] : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> | ||
%2 = stablehlo.broadcast_in_dim %arg0, dims = [1] : (tensor<2xf32>) -> tensor<2x2xf32> | ||
%3 = stablehlo.add %1, %2 : tensor<2x2xf32> | ||
return %3 : tensor<2x2xf32>\n | ||
} | ||
} | ||
``` | ||
|
||
* `input_locations` | ||
|
||
```python | ||
input_locations = [ | ||
InputLocation.parameter(name='linear_layer.bias'), # bias parameter | ||
InputLocation.parameter(name='linear_layer.weight'), # weight parameter | ||
InputLocation.input_arg(position=0), # positional input argument | ||
] | ||
``` | ||
|
||
* `state_dict` | ||
|
||
```python | ||
state_dict = { | ||
'linear_layer.weight': np.array( | ||
[[0.19075723, -0.13815854], [0.46516803, 0.12362058]], dtype='float32' | ||
), | ||
'linear_layer.bias': np.array([-0.37076423, 0.03301], dtype='float32'), | ||
} | ||
``` | ||
|
||
## Python package dependencies | ||
|
||
The above API depends on | ||
|
||
* MLIR Python bindings: To express an MLIR module. | ||
* TensorFlow: Only used to work with TF saved model artifacts. | ||
|
||
## Testing | ||
|
||
The repository provides [stablehlo_to_tf_saved_model_test.py](https://github.com/openxla/stablehlo/blob/main/stablehlo/integrations/python/tests/[stablehlo_to_tf_saved_model_test.py) | ||
to test the API and here is how to run it. | ||
|
||
```sh | ||
pip install tensorflow-cpu | ||
PYTHONPATH="./build/python_packages/stablehlo" python3 ../../tests/stablehlo_to_tf_saved_model_test.py | ||
``` |
244 changes: 244 additions & 0 deletions
244
stablehlo/integrations/python/stablehlo/savedmodel/stablehlo_to_tf_saved_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
# Copyright 2024 The StableHLO Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import copy | ||
import dataclasses | ||
from dataclasses import dataclass | ||
import enum | ||
import itertools | ||
import logging | ||
import os | ||
from typing import Any, Dict, List | ||
import mlir.dialects.stablehlo as stablehlo | ||
import mlir.ir as ir | ||
|
||
try: | ||
import tensorflow as tf | ||
from tensorflow.compiler.tf2xla.python import xla as tfxla | ||
except ImportError: | ||
logging.error( | ||
'This module is need tensorflow with xla support.\n' | ||
'Please install tensorflow with `pip install tf-nightly`.\n' | ||
) | ||
raise | ||
|
||
|
||
# Class to specifiy the input or output signature of a stablehlo function. | ||
@dataclass | ||
class VariableSignature: # either argument or parameters | ||
shape: List[int] | ||
dtype: str | ||
dynamic_dims: List[int] = dataclasses.field(default_factory=list) | ||
|
||
|
||
# Classes to specify the input type (parameter, argument) of a function. | ||
class VariableType(enum.Enum): | ||
INPUT_ARG = 'input_arg' | ||
PARAMETER = 'parameter' | ||
|
||
|
||
@dataclass | ||
class InputLocation: | ||
type_: VariableType | ||
position: int = -1 | ||
name: str = '' | ||
|
||
@classmethod | ||
def parameter(cls, name: str): | ||
return cls(type_=VariableType.PARAMETER, name=name) | ||
|
||
@classmethod | ||
def input_arg(cls, position: int): | ||
return cls(type_=VariableType.INPUT_ARG, position=position) | ||
|
||
|
||
# Class to specify stablehlo input specification. | ||
@dataclass | ||
class StableHLOFuncSpec: | ||
# stablehlo input signature | ||
input_signature: List[VariableSignature] | ||
# stablehlo output signature | ||
output_signature: List[VariableSignature] | ||
# annotations on stablehlo arguments as constants or variables | ||
input_locations: List[InputLocation] | ||
# serialized stablehlo format | ||
bytecode: bytes | ||
# map from constant arguments to constant values | ||
state_dict: Dict[str, Any] | ||
|
||
|
||
class StableHLOToTFSavedModel: | ||
|
||
def __init__(self, spec: StableHLOFuncSpec): | ||
self.stablehlo_type_to_tf_type = { | ||
'i1': 'bool', | ||
'i8': 'int8', | ||
'i16': 'i32', | ||
'i32': 'int32', | ||
'i64': 'int64', | ||
'f16': 'float16', | ||
'f32': 'float32', | ||
'f64': 'float64', | ||
'bf16': 'bfloat16', | ||
} | ||
self.stablehlo_program = spec | ||
|
||
# Logic to convert stablehlo program to tf saved model | ||
|
||
def _get_shape_with_dynamic(self, signature: VariableSignature): | ||
shape = copy.copy(signature.shape) | ||
for i in signature.dynamic_dims: | ||
shape[i] = None | ||
return shape | ||
|
||
def _extract_call_parameters(self, args): | ||
call_args = [] | ||
for loc in self.stablehlo_program.input_locations: | ||
if str(loc.type_) == str(VariableType.PARAMETER): | ||
call_args.append(self.stablehlo_program.state_dict[loc.name]) | ||
else: | ||
call_args.append(args[loc.position]) | ||
return call_args | ||
|
||
def _wrap_as_tf_func(self): | ||
def inner(*args): | ||
try: | ||
Touts = [ | ||
self.stablehlo_type_to_tf_type[sig.dtype] | ||
for sig in self.stablehlo_program.output_signature | ||
] | ||
except KeyError as e: | ||
raise KeyError(f'TensorFlow type mapping not found: {e}') from None | ||
|
||
Souts = [ | ||
self._get_shape_with_dynamic(sig) | ||
for sig in self.stablehlo_program.output_signature | ||
] | ||
call_args = self._extract_call_parameters(args) | ||
m = tfxla.call_module( | ||
tuple(call_args), | ||
version=5, | ||
Tout=Touts, # dtype information | ||
Sout=Souts, # Shape information | ||
function_list=[], | ||
module=self.stablehlo_program.bytecode, | ||
) | ||
return m | ||
|
||
return inner | ||
|
||
def _make_tf_function(self): | ||
return self._wrap_as_tf_func() | ||
|
||
def _make_input_signatures(self) -> List[tf.TensorSpec]: | ||
input_pos_to_spec = { | ||
loc.position: spec | ||
for loc, spec in itertools.chain( | ||
zip( | ||
self.stablehlo_program.input_locations, | ||
self.stablehlo_program.input_signature, | ||
), | ||
[], | ||
) | ||
if str(loc.type_) == str(VariableType.INPUT_ARG) | ||
} | ||
for i in range(len(input_pos_to_spec)): | ||
spec = input_pos_to_spec[i] | ||
shape = self._get_shape_with_dynamic(spec) | ||
try: | ||
dtype = getattr(tf, self.stablehlo_type_to_tf_type[spec.dtype]) | ||
except KeyError as e: | ||
raise KeyError( | ||
f'TensorFlow type mapping not found for {spec.dtype}: {e}' | ||
) from None | ||
|
||
yield tf.TensorSpec( | ||
shape=shape, | ||
dtype=dtype, | ||
name=f'args_{i}', | ||
) | ||
|
||
def to_tf_saved_model( | ||
self, | ||
path: os.PathLike, | ||
serving_key: str = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY, | ||
function_alias: str = '', | ||
) -> None: | ||
tfm = tf.Module() | ||
|
||
self.stablehlo_program.state_dict = { | ||
k: tf.Variable(v, trainable=False, name=k) | ||
for k, v in self.stablehlo_program.state_dict.items() | ||
} | ||
|
||
input_signatures = list(self._make_input_signatures()) | ||
|
||
tfm.f = tf.function( | ||
self._make_tf_function(), input_signature=input_signatures | ||
) | ||
tfm._variables = list(self.stablehlo_program.state_dict.values()) | ||
signatures = {serving_key: tfm.f.get_concrete_function(*input_signatures)} | ||
save_options = tf.saved_model.SaveOptions( | ||
function_aliases={ | ||
function_alias: tfm.f, | ||
} | ||
) | ||
tf.saved_model.save( | ||
tfm, | ||
path, | ||
signatures=signatures, | ||
options=save_options, | ||
) | ||
|
||
|
||
# Top level API for stablehlo to tf saved model | ||
|
||
|
||
def stablehlo_to_tf_saved_model( | ||
module: ir.Module, | ||
saved_model_dir: os.PathLike, | ||
target_version: str = stablehlo.get_current_version(), | ||
input_locations: list = [], | ||
state_dict: dict = {}, | ||
): | ||
input_signatures = [ | ||
VariableSignature( | ||
shape=input.shape, | ||
dtype=str(input.element_type), | ||
dynamic_dims=[], | ||
) | ||
for input in module.body.operations[0].type.inputs | ||
] | ||
output_signature = [ | ||
VariableSignature( | ||
shape=result.shape, | ||
dtype=str(result.element_type), | ||
dynamic_dims=[], | ||
) | ||
for result in module.body.operations[0].type.results | ||
] | ||
|
||
if input_locations == []: | ||
for i in range(len(module.body.operations[0].type.inputs)): | ||
input_locations.append(InputLocation.input_arg(position=i)) | ||
|
||
shlo_spec = StableHLOFuncSpec( | ||
input_signature=input_signatures, | ||
output_signature=output_signature, | ||
input_locations=input_locations, | ||
state_dict=state_dict, | ||
bytecode=stablehlo.serialize_portable_artifact(module, target_version), | ||
) | ||
|
||
StableHLOToTFSavedModel(shlo_spec).to_tf_saved_model(saved_model_dir) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.