Skip to content

Commit

Permalink
Add interpreter for ConvolutionOp
Browse files Browse the repository at this point in the history
  • Loading branch information
ghpvnist committed Mar 13, 2023
1 parent 551db9e commit 09a3683
Show file tree
Hide file tree
Showing 62 changed files with 1,529 additions and 726 deletions.
65 changes: 33 additions & 32 deletions docs/spec.md
Original file line number Diff line number Diff line change
Expand Up @@ -1943,41 +1943,42 @@ If `batch_group_count > 1`:
#### Constraints

<!-- markdownlint-disable line-length -->
* (C1) $N =$ rank(`lhs`) $=$ rank(`rhs`).
* (C2) element_type(`lhs`) $=$ element_type(`rhs`).
* (C3) size(`window_strides`) $= N - 2$ .
* (C4) `window_strides[i]` $\gt 0$ for all i $\in$ [0, size(`window_strides`)).
* (C5) dim(`padding`, 0) $= N - 2$ and dim(`padding`, 1) = 2.
* (C6) size(`lhs_dilation`) $= N - 2$.
* (C7) `lhs_dilation[i]` $\gt 0$ for all i $\in$ [0, size(`lhs_dilation`)).
* (C8) size(`rhs_dilation`) $= N - 2$.
* (C9) `rhs_dilation[i]` $\gt 0$ for all i $\in$ [0, size(`rhs_dilation`)).
* (C10) size(`window_reversal`) $= N - 2$.
* (C11) `dim(lhs, input_batch_dimension) % batch_group_count = 0`.
* (C12) `dim(lhs, input_feature_dimension) % feature_group_count = 0.
* (C13) size(`input_spatial_dimensions`) $= N - 2$.
* (C14) Given `input_dimensions = [input_batch_dimension] +
input_spatial_dimensions + [input_feature_dimension]`.
* (C1) rank(`lhs`) $\ge$ 2.
* (C2) $N =$ rank(`lhs`) $=$ rank(`rhs`).
* (C3) element_type(`lhs`) $=$ element_type(`rhs`).
* (C4) size(`window_strides`) $= N - 2$.
* (C5) `window_strides[i]` $\gt 0$ for all i $\in$ [0, size(`window_strides`)).
* (C6) dim(`padding`, 0) $= N - 2$ and dim(`padding`, 1) = 2.
* (C7) size(`lhs_dilation`) $= N - 2$.
* (C8) `lhs_dilation[i]` $\gt 0$ for all i $\in$ [0, size(`lhs_dilation`)).
* (C9) size(`rhs_dilation`) $= N - 2$.
* (C10) `rhs_dilation[i]` $\gt 0$ for all i $\in$ [0, size(`rhs_dilation`)).
* (C11) size(`window_reversal`) $= N - 2$.
* (C12) `dim(lhs, input_batch_dimension) % batch_group_count = 0`.
* (C13) `dim(lhs, input_feature_dimension) % feature_group_count = 0`.
* (C14) size(`input_spatial_dimensions`) $= N - 2$.
* (C15) Given `input_dimensions = [input_batch_dimension] +
input_spatial_dimensions + [input_feature_dimension]`:
* All dimensions in `input_dimensions` are unique.
* For any i $\in$ `input_dimensions`, 0 $\le$ i $\lt$ N.
* (C15) `dim(rhs, kernel_input_feature_dimension = dim(lhs, input_feature_dimension) / feature_group_count`.
* (C16) `dim(rhs, kernel_output_feature_dimension) % batch_group_count = 0`.
* (C17) `dim(rhs, kernel_output_feature_dimension) % feature_group_count = 0`.
* (C18) size(`kernel_spatial_dimensions`) $= N - 2$.
* (C19) Given `kernel_dimensions = kernel_spatial_dimensions +
[kernel_input_feature_dimension] + [kernel_output_feature_dimension]`.
* (C16) `dim(rhs, kernel_input_feature_dimension = dim(lhs, input_feature_dimension) / feature_group_count`.
* (C17) `dim(rhs, kernel_output_feature_dimension) % batch_group_count = 0`.
* (C18) `dim(rhs, kernel_output_feature_dimension) % feature_group_count = 0`.
* (C19) size(`kernel_spatial_dimensions`) $= N - 2$.
* (C20) Given `kernel_dimensions = kernel_spatial_dimensions +
[kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
* All dimensions in `kernel_dimensions` are unique.
* For any i $\in$ `kernel_dimensions`, 0 $\le$ i $\lt$ N.
* (C20) size(`output_spatial_dimensions`) $= N - 2$.
* (C21) Given `output_dimensions = [output_batch_dimension] +
output_spatial_dimensions + [output_feature_dimension]`.
* (C21) size(`output_spatial_dimensions`) $= N - 2$.
* (C22) Given `output_dimensions = [output_batch_dimension] +
output_spatial_dimensions + [output_feature_dimension]`:
* All dimensions in `output_dimensions` are unique.
* For any i $\in$ `output_dimensions`, 0 $\le$ i $\lt$ N.
* (C22) `feature_group_count > 0`.
* (C23) `batch_group_count > 0`.
* (C24) `feature_group_count` $= 1$ OR `batch_group_count` $= 1$.
* (C25) size(`precision_config`) $=$ 2.
* (C26) For result_dim $\in$ [0, N), `dim(result, result_dim)` is given by
* (C23) `feature_group_count > 0`.
* (C24) `batch_group_count > 0`.
* (C25) Either `feature_group_count` $= 1$ or `batch_group_count` $= 1$.
* (C26) size(`precision_config`) $=$ 2.
* (C27) For result_dim $\in$ [0, N), `dim(result, result_dim)` is given by:
* `dim(lhs, input_batch_dimension) / batch_group_count`, if `result_dim = output_batch_dimension`.
* `dim(rhs, kernel_output_feature_dimension)`, if `result_dim = output_feature_dimension`.
* `num_windows` otherwise, where:
Expand All @@ -1988,8 +1989,6 @@ If `batch_group_count > 1`:
* `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`.
* `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) == 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`.
* `num_windows = (padded_input_shape[lhs_dim] == 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]) ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`.
* (C27) element_type(`result`) $=$ element_type(`lhs`).
* (C28) rank(`result`) $= N$.
<!-- markdownlint-enable line-length -->

#### Examples
Expand Down Expand Up @@ -2030,13 +2029,15 @@ If `batch_group_count > 1`:
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
} : (tensor<1x4x4x1xi64>, tensor<3x3x1x1xi64>) -> tensor<1x2x2x1xi64>
// %result: [[
// [[10], [26]],
// [[46], [62]]
// ]]
```

&nbsp;[More Examples](../stablehlo/tests/interpret_convolution.mlir)

### cosine

#### Semantics
Expand Down
2 changes: 1 addition & 1 deletion docs/status.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ one of the following tracking labels.
| concatenate | yes | yes | yes | yes | yes |
| constant | yes | yes | yes | yes | yes |
| convert | yes | yes | infeasible | yes | no |
| convolution | yes | yes | infeasible | revisit | no |
| convolution | yes | yes | infeasible | revisit | yes |
| cosine | yes | yes | yes | yes | yes |
| count_leading_zeros | yes | yes | yes | yes | no |
| create_token | no | yes\* | yes\* | yes | no |
Expand Down
12 changes: 12 additions & 0 deletions output.mlir

Large diffs are not rendered by default.

36 changes: 22 additions & 14 deletions stablehlo/dialect/StablehloOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -2037,24 +2037,32 @@ def StableHLO_ConvolutionOp : StableHLO_Op<"convolution", [Pure]> {

Example:
```mlir
%result = "stablehlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #stablehlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
%result = stablehlo.convolution(%lhs, %rhs)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
window = {
stride = [4, 4],
pad = [[0, 0], [0, 0]],
lhs_dilate = [2, 2],
rhs_dilate = [1, 1],
reverse = [false, false]
} {
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} :
(tensor<1x4x4x1xi64>, tensor<3x3x1x1xi64>) -> tensor<1x2x2x1xi64>
```
}];
let arguments = !con(
(ins
HLO_Tensor:$lhs,
HLO_Tensor:$rhs),
StableHLO_ConvolutionAttributes.attributes);
HLO_Tensor:$lhs, /*convolution_i1*/
HLO_Tensor:$rhs), /*convolution_i2*/
StableHLO_ConvolutionAttributes.attributes /*convolution_i3, convolution_i4,
convolution_i5, convolution_i6, convolution_i7, convolution_i8,
convolution_i9, convolution_i10, convolution_i11, convolution_i12,
convolution_i13, convolution_i14, convolution_i15, convolution_i16,
convolution_i17, convolution_i18, convolution_i19*/
);

let results = (outs HLO_Tensor);
let hasVerifier = 1;
Expand Down
Loading

0 comments on commit 09a3683

Please sign in to comment.