OpenVINO Tokenizers adds text processing operations to OpenVINO.
- Perform tokenization and detokenization without third-party dependencies
- Convert a HuggingFace tokenizer into OpenVINO model tokenizer and detokenizer
- Combine OpenVINO models into a single model
- Add greedy decoding pipeline to text generation model
(Recommended) Create and activate virtual env:
python3 -m venv venv
source venv/bin/activate
# or
conda create --name openvino_tokenizers
conda activate openvino_tokenizers
Use minimal installation when you have a converted OpenVINO tokenizer:
pip install openvino-tokenizers
# or
conda install -c conda-forge openvino openvino-tokenizers
If you want to convert HuggingFace tokenizers into OpenVINO tokenizers:
pip install openvino-tokenizers[transformers]
# or
conda install -c conda-forge openvino openvino-tokenizers && pip install transformers[sentencepiece] tiktoken
Use openvino-tokenizers[transformers]
to install tokenizers conversion dependencies.
pip install --pre -U openvino openvino-tokenizers --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
Install OpenVINO archive distribution. Use --no-deps
to avoid OpenVINO installation from PyPI.
source path/to/installed/openvino/setupvars.sh
git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install --no-deps .
This command is the equivalent of minimal installation. Install tokenizers conversion dependencies if needed:
pip install transformers[sentencepiece] tiktoken
source path/to/installed/openvino/setupvars.sh
git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install -e .[all]
# verify installation by running tests
cd tests/
pytest .
You can use converted tokenizers in C++ pipelines with prebuild binaries.
- Download OpenVINO archive distribution for your OS from here and extract the archive.
- Download OpenVINO Tokenizers prebuild libraries from here. To ensure compatibility first three numbers of OpenVINO Tokenizers version should match OpenVINO version and OS.
- Extract OpenVINO Tokenizers archive into OpenVINO installation directory. OpenVINO Tokenizers archive maintains the structure to be aligned with OpenVINO archive:
- Windows:
<openvino_dir>\runtime\bin\intel64\Release\
- MacOS_x86:
<openvino_dir>/runtime/lib/intel64/Release
- MacOS_arm64:
<openvino_dir>/runtime/lib/arm64/Release/
- Linux_x86:
<openvino_dir>/runtime/lib/intel64/
- Linux_arm64:
<openvino_dir>/runtime/lib/aarch64/
- Windows:
After that you can add binary extension in the code with:
core.add_extension("openvino_tokenizers.dll")
for Windowscore.add_extension("libopenvino_tokenizers.dylib")
for MacOScore.add_extension("libopenvino_tokenizers.so")
for Linux
and read
/compile
converted (de)tokenizers models.
If you use version 2023.3.0.0
, the binary extension file is called (lib)user_ov_extension.(dll/dylib/so)
.
CPU
device only.
OpenVINO Tokenizers ships with CLI tool that can convert tokenizers from Huggingface Hub or Huggingface tokenizers saved on disk:
convert_tokenizer codellama/CodeLlama-7b-hf --with-detokenizer -o output_dir
There is also convert_tokenizer
function that can convert tokenizer python object.
import numpy as np
from transformers import AutoTokenizer
from openvino import compile_model, save_model
from openvino_tokenizers import convert_tokenizer
hf_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
ov_tokenizer = convert_tokenizer(hf_tokenizer)
compiled_tokenzier = compile_model(ov_tokenizer)
text_input = ["Test string"]
hf_output = hf_tokenizer(text_input, return_tensors="np")
ov_output = compiled_tokenzier(text_input)
for output_name in hf_output:
print(f"OpenVINO {output_name} = {ov_output[output_name]}")
print(f"HuggingFace {output_name} = {hf_output[output_name]}")
# OpenVINO input_ids = [[ 101 3231 5164 102]]
# HuggingFace input_ids = [[ 101 3231 5164 102]]
# OpenVINO token_type_ids = [[0 0 0 0]]
# HuggingFace token_type_ids = [[0 0 0 0]]
# OpenVINO attention_mask = [[1 1 1 1]]
# HuggingFace attention_mask = [[1 1 1 1]]
# save tokenizer for later use
save_model(ov_tokenizer, "openvino_tokenizer.xml")
loaded_tokenizer = compile_model("openvino_tokenizer.xml")
loaded_ov_output = loaded_tokenizer(text_input)
for output_name in hf_output:
assert np.all(loaded_ov_output[output_name] == ov_output[output_name])
To infer and convert the original model, install torch or torch-cpu to the virtual environment.
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from openvino import compile_model, convert_model
from openvino_tokenizers import convert_tokenizer, connect_models
checkpoint = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
hf_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
hf_model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
text_input = ["Free money!!!"]
hf_input = hf_tokenizer(text_input, return_tensors="pt")
hf_output = hf_model(**hf_input)
ov_tokenizer = convert_tokenizer(hf_tokenizer)
ov_model = convert_model(hf_model, example_input=hf_input.data)
combined_model = connect_models(ov_tokenizer, ov_model)
compiled_combined_model = compile_model(combined_model)
openvino_output = compiled_combined_model(text_input)
print(f"OpenVINO logits: {openvino_output['logits']}")
# OpenVINO logits: [[ 1.2007061 -1.4698029]]
print(f"HuggingFace logits {hf_output.logits}")
# HuggingFace logits tensor([[ 1.2007, -1.4698]], grad_fn=<AddmmBackward0>)
Import openvino_tokenizers
will add all tokenizer-related operations to OpenVINO,
after which you can work with saved tokenizers and detokenizers.
import numpy as np
import openvino_tokenizers
from openvino import Core
core = Core()
# detokenizer from codellama sentencepiece model
compiled_detokenizer = core.compile_model("detokenizer.xml")
token_ids = np.random.randint(100, 1000, size=(3, 5))
openvino_output = compiled_detokenizer(token_ids)
print(openvino_output["string_output"])
# ['sc�ouition�', 'intvenord hasient', 'g shouldwer M more']
import numpy as np
from openvino import compile_model, convert_model
from openvino_tokenizers import add_greedy_decoding, convert_tokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
model_checkpoint = "JackFram/llama-68m"
hf_tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
hf_model = AutoModelForCausalLM.from_pretrained(model_checkpoint, use_cache=False)
# convert hf tokenizer
text_input = ["Quick brown fox jumped "]
ov_tokenizer, ov_detokenizer = convert_tokenizer(hf_tokenizer, with_detokenizer=True)
compiled_tokenizer = compile_model(ov_tokenizer)
# transform input text into tokens
ov_input = compiled_tokenizer(text_input)
hf_input = hf_tokenizer(text_input, return_tensors="pt")
# convert Pytorch model to OpenVINO IR and add greedy decoding pipeline to it
ov_model = convert_model(hf_model, example_input=hf_input.data)
ov_model_with_greedy_decoding = add_greedy_decoding(ov_model)
compiled_model = compile_model(ov_model_with_greedy_decoding)
# generate new tokens
new_tokens_size = 10
prompt_size = ov_input["input_ids"].shape[-1]
input_dict = {
output.any_name: np.hstack([tensor, np.zeros(shape=(1, new_tokens_size), dtype=np.int_)])
for output, tensor in ov_input.items()
}
for idx in range(prompt_size, prompt_size + new_tokens_size):
output = compiled_model(input_dict)["token_ids"]
input_dict["input_ids"][:, idx] = output[:, idx - 1]
input_dict["attention_mask"][:, idx] = 1
ov_token_ids = input_dict["input_ids"]
hf_token_ids = hf_model.generate(
**hf_input,
min_new_tokens=new_tokens_size,
max_new_tokens=new_tokens_size,
temperature=0, # greedy decoding
)
# decode model output
compiled_detokenizer = compile_model(ov_detokenizer)
ov_output = compiled_detokenizer(ov_token_ids)["string_output"]
hf_output = hf_tokenizer.batch_decode(hf_token_ids, skip_special_tokens=True)
print(f"OpenVINO output string: `{ov_output}`")
# OpenVINO output string: `['Quick brown fox was walking through the forest. He was looking for something']`
print(f"HuggingFace output string: `{hf_output}`")
# HuggingFace output string: `['Quick brown fox was walking through the forest. He was looking for something']`
OpenVINO Tokenizers include converters for certain TensorFlow Text operations. Currently, only the MUSE model is supported. Here is an example of model conversion and inference:
import numpy as np
import tensorflow_hub as hub
import tensorflow_text # register tf text ops
from openvino import convert_model, compile_model
import openvino_tokenizers # register ov tokenizer ops and translators
sentences = ["dog", "I cuccioli sono carini.", "私は犬と一緒にビーチを散歩するのが好きです"]
tf_embed = hub.load(
"https://www.kaggle.com/models/google/universal-sentence-encoder/frameworks/"
"TensorFlow2/variations/multilingual/versions/2"
)
# convert model that uses Sentencepiece tokenizer op from TF Text
ov_model = convert_model(tf_embed)
ov_embed = compile_model(ov_model, "CPU")
ov_result = ov_embed(sentences)[ov_embed.output()]
tf_result = tf_embed(sentences)
assert np.all(np.isclose(ov_result, tf_result, atol=1e-4))
from urllib.request import urlopen
from openvino import compile_model
from openvino_tokenizers import build_rwkv_tokenizer
rwkv_vocab_url = (
"https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/tokenizer/rwkv_vocab_v20230424.txt"
)
with urlopen(rwkv_vocab_url) as vocab_file:
vocab = map(bytes.decode, vocab_file)
tokenizer, detokenizer = build_rwkv_tokenizer(vocab)
tokenizer, detokenizer = compile_model(tokenizer), compile_model(detokenizer)
print(tokenized := tokenizer(["Test string"])["input_ids"]) # [[24235 47429]]
print(detokenizer(tokenized)["string_output"]) # ['Test string']
Huggingface Tokenizer Type |
Tokenizer Model Type | Tokenizer | Detokenizer |
---|---|---|---|
Fast | WordPiece | ✅ | ❌ |
BPE | ✅ | ✅ | |
Unigram | ❌ | ❌ | |
Legacy | SentencePiece .model | ✅ | ✅ |
Custom | tiktoken | ✅ | ✅ |
RWKV | Trie | ✅ | ✅ |
This report is autogenerated and includes tokenizers and detokenizers tests. The Output Matched, %
column shows the percent of test strings for which the results of OpenVINO and Hugingface Tokenizers are the same. To update the report run pytest --update_readme tokenizers_test.py
in tests
directory.
Tokenizer Type | Output Matched, % | Number of Tests |
---|---|---|
BPE | 94.45 | 5535 |
SentencePiece | 79.06 | 4340 |
Tiktoken | 93.98 | 266 |
WordPiece | 91.31 | 1301 |
Tokenizer Type | Model | Output Matched, % | Number of Tests |
---|---|---|---|
BPE | EleutherAI/gpt-j-6b | 95.18 | 249 |
BPE | EleutherAI/gpt-neo-125m | 95.18 | 249 |
BPE | EleutherAI/gpt-neox-20b | 95.71 | 233 |
BPE | EleutherAI/pythia-12b-deduped | 95.71 | 233 |
BPE | KoboldAI/fairseq-dense-13B | 96.57 | 233 |
BPE | NousResearch/Meta-Llama-3-8B-Instruct | 95.71 | 233 |
BPE | Salesforce/codegen-16B-multi | 95.98 | 249 |
BPE | Xenova/gpt-4o | 94.38 | 249 |
BPE | ai-forever/rugpt3large_based_on_gpt2 | 90.36 | 249 |
BPE | bigscience/bloom | 97.42 | 233 |
BPE | databricks/dolly-v2-3b | 95.71 | 233 |
BPE | facebook/bart-large-mnli | 95.18 | 249 |
BPE | facebook/galactica-120b | 95.71 | 233 |
BPE | facebook/opt-66b | 96.57 | 233 |
BPE | gpt2 | 95.18 | 249 |
BPE | laion/CLIP-ViT-bigG-14-laion2B-39B-b160k | 74.70 | 249 |
BPE | microsoft/deberta-base | 96.57 | 233 |
BPE | roberta-base | 95.18 | 249 |
BPE | sentence-transformers/all-roberta-large-v1 | 95.18 | 249 |
BPE | stabilityai/stablecode-completion-alpha-3b-4k | 95.71 | 233 |
BPE | stabilityai/stablelm-2-1_6b | 95.71 | 233 |
BPE | stabilityai/stablelm-tuned-alpha-7b | 95.71 | 233 |
BPE | tiiuae/falcon-7b | 94.38 | 249 |
SentencePiece | NousResearch/Llama-2-13b-hf | 100.00 | 217 |
SentencePiece | NousResearch/Llama-2-13b-hf_slow | 100.00 | 217 |
SentencePiece | THUDM/chatglm2-6b | 100.00 | 217 |
SentencePiece | THUDM/chatglm2-6b_slow | 100.00 | 217 |
SentencePiece | THUDM/chatglm3-6b | 31.80 | 217 |
SentencePiece | THUDM/chatglm3-6b_slow | 31.80 | 217 |
SentencePiece | camembert-base | 3.23 | 217 |
SentencePiece | camembert-base_slow | 77.42 | 217 |
SentencePiece | codellama/CodeLlama-7b-hf | 100.00 | 217 |
SentencePiece | codellama/CodeLlama-7b-hf_slow | 100.00 | 217 |
SentencePiece | facebook/musicgen-small | 82.49 | 217 |
SentencePiece | facebook/musicgen-small_slow | 77.42 | 217 |
SentencePiece | microsoft/deberta-v3-base | 92.63 | 217 |
SentencePiece | microsoft/deberta-v3-base_slow | 100.00 | 217 |
SentencePiece | t5-base | 84.33 | 217 |
SentencePiece | t5-base_slow | 79.26 | 217 |
SentencePiece | xlm-roberta-base | 96.31 | 217 |
SentencePiece | xlm-roberta-base_slow | 96.31 | 217 |
SentencePiece | xlnet-base-cased | 67.28 | 217 |
SentencePiece | xlnet-base-cased_slow | 60.83 | 217 |
Tiktoken | Qwen/Qwen-14B-Chat | 92.91 | 141 |
Tiktoken | Salesforce/xgen-7b-8k-base | 95.20 | 125 |
WordPiece | ProsusAI/finbert | 91.43 | 105 |
WordPiece | bert-base-multilingual-cased | 91.43 | 105 |
WordPiece | bert-base-uncased | 91.43 | 105 |
WordPiece | cointegrated/rubert-tiny2 | 91.43 | 105 |
WordPiece | distilbert-base-uncased-finetuned-sst-2-english | 91.43 | 105 |
WordPiece | google/electra-base-discriminator | 91.43 | 105 |
WordPiece | google/mobilebert-uncased | 94.38 | 89 |
WordPiece | jhgan/ko-sbert-sts | 91.43 | 105 |
WordPiece | prajjwal1/bert-mini | 94.38 | 89 |
WordPiece | rajiv003/ernie-finetuned-qqp | 94.38 | 89 |
WordPiece | rasa/LaBSE | 80.00 | 105 |
WordPiece | sentence-transformers/all-MiniLM-L6-v2 | 91.43 | 105 |
WordPiece | squeezebert/squeezebert-uncased | 94.38 | 89 |
In some tokenizers, you need to select certain settings so that their output is closer to the Huggingface tokenizers:
THUDM/chatglm2-6b
detokenizer always skips special tokens. Useskip_special_tokens=True
during conversionTHUDM/chatglm3-6b
detokenizer don't skips special tokens. Useskip_special_tokens=False
during conversion- All tested tiktoken based detokenizers leave extra spaces. Use
clean_up_tokenization_spaces=False
during conversion