Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP][GPU] Remove legacy shape infer and multi-out handling #25685

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
3 changes: 0 additions & 3 deletions src/plugins/intel_gpu/include/intel_gpu/graph/program.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -287,7 +287,6 @@ struct program {
void load(cldnn::BinaryInputBuffer& ib);
bool is_loaded_from_cache() const { return _loaded_from_cache; }

bool is_new_shape_infer() const { return new_shape_infer; }
layout_optimizer& get_layout_optimizer() const { return *_layout_optimizer; }

private:
Expand All @@ -313,8 +312,6 @@ struct program {
std::shared_ptr<ICompilationContext> _compilation_context;
bool _loaded_from_cache = false;

bool new_shape_infer = false;

std::map<primitive_id, std::shared_ptr<program_node>> nodes_map;
std::list<primitive_id> optimized_out;

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -138,8 +138,6 @@ class ProgramBuilder final {

void add_primitive(const ov::Node& op, std::shared_ptr<cldnn::primitive> prim, std::vector<std::string> aliases = {});

bool use_new_shape_infer() const { return allow_new_shape_infer; }
bool requires_new_shape_infer(const std::shared_ptr<ov::Node>& op) const;
bool is_inner_program() const { return m_is_inner_program; }
bool is_query_mode() { return queryMode; }

Expand All @@ -157,8 +155,6 @@ class ProgramBuilder final {
std::shared_ptr<cldnn::topology> m_topology;
CustomLayerMap m_custom_layers;

bool allow_new_shape_infer = false;

bool queryMode;

std::shared_ptr<ov::threading::IStreamsExecutor> m_task_executor;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,35 +20,6 @@ struct adaptive_pooling : public primitive_base<adaptive_pooling> {
mode{adaptive_pooling_mode::average},
output_size{} {}

/// @brief Constructs AdaptiveAvgPooling primitive.
/// @param id This primitive id.
/// @param input Input primitive id.
/// @param output_size Output data size of the primitive
adaptive_pooling(const primitive_id &id,
const input_info &input,
tensor output_size)
: primitive_base(id, {input}),
mode{adaptive_pooling_mode::average},
output_size{output_size} {}

/// @brief Constructs AdaptiveMaxPooling primitive.
/// @param id This primitive id.
/// @param input Input primitive id.
/// @param output_shape Output shape primitive id.
/// @param output_size Output data size of the primitive
/// @param indices_output Indices output primitive id.
/// @param index_element_type Data type of indices output.
adaptive_pooling(const primitive_id &id,
const input_info &input,
tensor output_size,
const primitive_id &indices_output,
data_types index_element_type)
: primitive_base(id, {input, indices_output}),
mode{adaptive_pooling_mode::max},
output_size{output_size},
indices_output{indices_output},
index_element_type{index_element_type} {}

/// @brief Constructs AdaptiveAvgPooling primitive for dynamic shape.
/// @param id This primitive id.
/// @param input Input primitive id.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -111,12 +111,6 @@ struct arg_max_min : public primitive_base<arg_max_min> {
stable == rhs_casted.stable;
}

size_t get_output_nums() const {
return (input_size() == 3 ? 2 : output_size());
}
bool has_second_output() const { return get_output_nums() == 2; }
bool use_multiple_outputs() const { return input_size() != 3; }

void save(BinaryOutputBuffer& ob) const override {
primitive_base<arg_max_min>::save(ob);
ob << make_data(&mode, sizeof(ov::op::TopKMode));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,38 +50,33 @@ struct batch_to_space : public primitive_base<batch_to_space> {
/// @param crops_end Amount to crop from the ending along each axis of data input
batch_to_space(const primitive_id& id,
const input_info& input,
const tensor& block_shape,
const tensor& crops_begin,
const tensor& crops_end,
const tensor& out_size)
const std::vector<int32_t>& block_shape,
const std::vector<int32_t>& crops_begin,
const std::vector<int32_t>& crops_end)
: primitive_base(id, {input}),
block_shape(block_shape),
crops_begin(crops_begin),
crops_end(crops_end),
out_size(out_size),
shape_constant(1) {}

batch_to_space(const primitive_id& id,
const std::vector<input_info>& inputs,
const tensor& out_size)
: primitive_base(id, inputs),
block_shape(tensor()),
crops_begin(tensor()),
crops_end(tensor()),
out_size(out_size),
const std::vector<input_info>& inputs)
: primitive_base(id, inputs, {}),
block_shape({}),
crops_begin({}),
crops_end({}),
shape_constant(0) {}

tensor block_shape;
tensor crops_begin;
tensor crops_end;
tensor out_size;
std::vector<int32_t> block_shape;
std::vector<int32_t> crops_begin;
std::vector<int32_t> crops_end;
int64_t shape_constant;

size_t hash() const override {
size_t seed = primitive::hash();
seed = hash_combine(seed, block_shape.hash());
seed = hash_combine(seed, crops_begin.hash());
seed = hash_combine(seed, crops_end.hash());
seed = hash_range(seed, block_shape.begin(), block_shape.end());
seed = hash_range(seed, crops_begin.begin(), crops_begin.end());
seed = hash_range(seed, crops_end.begin(), crops_end.end());
seed = hash_combine(seed, shape_constant);
return seed;
}
Expand All @@ -102,7 +97,6 @@ struct batch_to_space : public primitive_base<batch_to_space> {
ob << block_shape;
ob << crops_begin;
ob << crops_end;
ob << out_size;
ob << shape_constant;
}

Expand All @@ -111,7 +105,6 @@ struct batch_to_space : public primitive_base<batch_to_space> {
ib >> block_shape;
ib >> crops_begin;
ib >> crops_end;
ib >> out_size;
ib >> shape_constant;
}
};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,25 +57,6 @@ struct broadcast : public primitive_base<broadcast> {

broadcast() : primitive_base("", {}) {}

/// @brief Constructs broadcast primitive / layer.
///
/// @param id An identifier of new primitive.
/// @param input An identifier of primitive which is an input for newly created
/// broadcast primitive.
/// @param broadcast_sizes Sizes of broadcast. Output size of current primitive
/// will match broadcast sizes (layout type will not change).
/// @param broadcast_axes Axes positions (0-based, from left to right) in output_shape
/// that are being broadcast. Values of broadcast_axes on remaining
/// axes must be greater (dividable) or equal to corresponding input
/// dimension values.
broadcast(const primitive_id& id,
const input_info& input,
const tensor& broadcast_sizes,
const std::vector<uint16_t>& broadcast_axes = {})
: primitive_base(id, {input}),
broadcast_sizes(broadcast_sizes),
broadcast_axes(broadcast_axes) {}

/// @brief Constructs broadcast primitive / layer with static target_shape.
///
/// @param id An identifier of new primitive.
Expand All @@ -99,9 +80,7 @@ struct broadcast : public primitive_base<broadcast> {
: primitive_base(id, {input}),
target_shape(target_shape),
axes_mapping(axes_mapping),
broadcast_mode(broadcast_spec),
broadcast_sizes(target_shape.empty() ? tensor(1) : tensor(0)),
broadcast_axes({}) {}
broadcast_mode(broadcast_spec) {}

/// @brief Constructs broadcast primitive / layer with dynamic target_shape.
broadcast(const primitive_id& id,
Expand All @@ -112,27 +91,19 @@ struct broadcast : public primitive_base<broadcast> {
: primitive_base(id, {input, target_shape_id}),
target_shape({}),
axes_mapping(axes_mapping),
broadcast_mode(broadcast_spec),
broadcast_sizes({}),
broadcast_axes({}) {}
broadcast_mode(broadcast_spec) {}

/// @brief The shape of the output tensor.
ov::Shape target_shape;
/// @brief The axis positions (0-based) in the result that correspond to input axes.
ov::AxisSet axes_mapping;
/// @brief Broadcast mode to use for determining broadcast axes.
ov::op::BroadcastModeSpec broadcast_mode;
/// @brief Expected sizes of output from broadcast primitive.
tensor broadcast_sizes;
/// @brief Array of axes positions from output shape (0-based, from left to right)
/// along which broadcast should happen.
std::vector<uint16_t> broadcast_axes;

ov::PartialShape output_pshape = ov::PartialShape::dynamic();

size_t hash() const override {
size_t seed = primitive::hash();
seed = hash_range(seed, broadcast_axes.begin(), broadcast_axes.end());
seed = hash_range(seed, axes_mapping.begin(), axes_mapping.end());
return seed;
}
Expand All @@ -145,7 +116,6 @@ struct broadcast : public primitive_base<broadcast> {

return axes_mapping == rhs_casted.axes_mapping &&
broadcast_mode == rhs_casted.broadcast_mode &&
broadcast_sizes == rhs_casted.broadcast_sizes &&
output_pshape == rhs_casted.output_pshape;
}

Expand All @@ -154,8 +124,6 @@ struct broadcast : public primitive_base<broadcast> {
ob << target_shape;
ob << axes_mapping;
ob << make_data(&broadcast_mode, sizeof(ov::op::BroadcastModeSpec));
ob << broadcast_sizes;
ob << broadcast_axes;
ob << output_pshape;
}

Expand All @@ -164,8 +132,6 @@ struct broadcast : public primitive_base<broadcast> {
ib >> target_shape;
ib >> axes_mapping;
ib >> make_data(&broadcast_mode, sizeof(ov::op::BroadcastModeSpec));
ib >> broadcast_sizes;
ib >> broadcast_axes;
ib >> output_pshape;
}
};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,8 @@ struct embedding_bag : public primitive_base<embedding_bag> {
embedding_bag(const primitive_id& id,
const std::vector<input_info>& inputs,
const embedding_bag_type& type,
const tensor& output_shape,
const int32_t default_index = -1)
: primitive_base(id, inputs), type(type), output_shape(output_shape), default_index(default_index) {}
: primitive_base(id, inputs), type(type), default_index(default_index) {}

/// @brief Type of EmbeddingBag operation
embedding_bag_type type;
Expand Down Expand Up @@ -60,14 +59,12 @@ struct embedding_bag : public primitive_base<embedding_bag> {
void save(BinaryOutputBuffer& ob) const override {
primitive_base<embedding_bag>::save(ob);
ob << make_data(&type, sizeof(embedding_bag_type));
ob << output_shape;
ob << default_index;
}

void load(BinaryInputBuffer& ib) override {
primitive_base<embedding_bag>::load(ib);
ib >> make_data(&type, sizeof(embedding_bag_type));
ib >> output_shape;
ib >> default_index;
}
};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,6 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
const input_info& input_deltas,
const input_info& input_scores,
const input_info& input_im_info,
const input_info& output_classes,
const input_info& output_scores,
float score_threshold,
float nms_threshold,
int num_classes,
Expand All @@ -47,10 +45,7 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
bool class_agnostic_box_regression,
float max_delta_log_wh,
std::vector<float> deltas_weights)
: primitive_base{id,
{input_rois, input_deltas, input_scores, input_im_info, output_classes, output_scores}},
output_classes{output_classes.pid},
output_scores{output_scores.pid},
: primitive_base{id, {input_rois, input_deltas, input_scores, input_im_info}},
score_threshold{score_threshold},
nms_threshold{nms_threshold},
num_classes{num_classes},
Expand All @@ -60,34 +55,6 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
max_delta_log_wh{max_delta_log_wh},
deltas_weights{std::move(deltas_weights)} {}

experimental_detectron_detection_output(const primitive_id& id,
const input_info& input_rois,
const input_info& input_deltas,
const input_info& input_scores,
const input_info& input_im_info,
float score_threshold,
float nms_threshold,
int num_classes,
int post_nms_count,
int max_detections_per_image,
bool class_agnostic_box_regression,
float max_delta_log_wh,
std::vector<float> deltas_weights)
: primitive_base{id,
{input_rois, input_deltas, input_scores, input_im_info}},
output_classes{},
output_scores{},
score_threshold{score_threshold},
nms_threshold{nms_threshold},
num_classes{num_classes},
post_nms_count{post_nms_count},
max_detections_per_image{max_detections_per_image},
class_agnostic_box_regression{class_agnostic_box_regression},
max_delta_log_wh{max_delta_log_wh},
deltas_weights{std::move(deltas_weights)} {}

primitive_id output_classes;
primitive_id output_scores;
float score_threshold = 0.0f;
float nms_threshold = 0.0f;
int num_classes = 0;
Expand All @@ -107,8 +74,6 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
seed = hash_combine(seed, class_agnostic_box_regression);
seed = hash_combine(seed, max_delta_log_wh);
seed = hash_range(seed, deltas_weights.begin(), deltas_weights.end());
seed = hash_combine(seed, output_classes.empty());
seed = hash_combine(seed, output_scores.empty());
return seed;
}

Expand All @@ -126,16 +91,12 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
cmp_fields(max_detections_per_image) &&
cmp_fields(class_agnostic_box_regression) &&
cmp_fields(max_delta_log_wh) &&
cmp_fields(deltas_weights) &&
cmp_fields(output_classes.empty()) &&
cmp_fields(output_scores.empty());
cmp_fields(deltas_weights);
#undef cmp_fields
}

void save(BinaryOutputBuffer& ob) const override {
primitive_base<experimental_detectron_detection_output>::save(ob);
ob << output_classes;
ob << output_scores;
ob << score_threshold;
ob << nms_threshold;
ob << num_classes;
Expand All @@ -148,8 +109,6 @@ struct experimental_detectron_detection_output : public primitive_base<experimen

void load(BinaryInputBuffer& ib) override {
primitive_base<experimental_detectron_detection_output>::load(ib);
ib >> output_classes;
ib >> output_scores;
ib >> score_threshold;
ib >> nms_threshold;
ib >> num_classes;
Expand All @@ -159,17 +118,5 @@ struct experimental_detectron_detection_output : public primitive_base<experimen
ib >> max_delta_log_wh;
ib >> deltas_weights;
}

protected:
std::vector<input_info> get_dependencies() const override {
std::vector<input_info> ret;
if (!output_classes.empty())
ret.emplace_back(output_classes);

if (!output_scores.empty())
ret.emplace_back(output_scores);

return ret;
}
};
} // namespace cldnn
Loading
Loading