Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TF FE] Support complex tensors for Gather, GatherV2 operations #23493

Open
wants to merge 22 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 48 additions & 3 deletions src/frontends/tensorflow_common/src/op/gather.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,15 @@
#include "openvino/op/gather.hpp"

#include "common_op_table.hpp"
#include "helper_ops/complex_type_mark.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/equal.hpp"
#include "openvino/op/gather_nd.hpp"
#include "openvino/op/less.hpp"
#include "openvino/op/select.hpp"
#include "openvino/op/shape_of.hpp"
#include "openvino/op/subtract.hpp"

using namespace std;
using namespace ov::op;
Expand All @@ -28,8 +35,20 @@ OutputVector translate_basic_gather_op(const NodeContext& node, const ov::Output
OutputVector translate_gather_op(const NodeContext& node) {
// Gather has two inputs: data and indices
// axis by which data is sliced is always equal to 0, batch_dims is always equal to 0
default_op_checks(node, 2, {"Gather"});
default_op_checks(node, 2, {"Gather"}, true);
auto params = node.get_input(0);
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(params.get_node_shared_ptr());
auto axis = make_shared<v0::Constant>(element::i64, Shape{}, 0);

if (complex_type_mark) {
params = complex_type_mark->input_value(0);
auto indices = node.get_input(1);
auto gather = make_shared<v8::Gather>(params, indices, axis, 0);
set_node_name(node.get_name(), gather);
auto complex_reshape = make_shared<ComplexTypeMark>(gather, complex_type_mark->get_complex_part_type());
return {complex_reshape};
}

return translate_basic_gather_op(node, axis, 0);
}

Expand All @@ -45,9 +64,36 @@ OutputVector translate_resource_gather_op(const NodeContext& node) {
OutputVector translate_gather_v2_op(const NodeContext& node) {
// GatherV2 has three inputs: data, indices, and axis by which data is sliced
// batch_dims is an attribute and can vary
default_op_checks(node, 3, {"GatherV2"});
default_op_checks(node, 3, {"GatherV2"}, true);
auto params = node.get_input(0);
auto indices = node.get_input(1);
auto axis = node.get_input(2);
auto batch_dims = node.get_attribute<int64_t>("batch_dims", 0);
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(params.get_node_shared_ptr());

if (complex_type_mark) {
params = complex_type_mark->input_value(0);
// If the axis is negative, adjust it
auto zero = make_shared<v0::Constant>(ov::element::i32, Shape{}, 0);
auto one = make_shared<v0::Constant>(ov::element::i32, Shape{}, 1);
auto condition = make_shared<v1::Less>(axis, zero);
auto updated_axis = make_shared<v1::Subtract>(axis, one);

rkazants marked this conversation as resolved.
Show resolved Hide resolved
// create Select operation to choose between original axis and updated axis
auto selected_axis = make_shared<v1::Select>(condition, updated_axis, axis);

// Update batch_dims if negative
auto updated_batch_dims = (batch_dims < 0) ? batch_dims - 1 : batch_dims;

/// Create the Gather operation
auto gather = make_shared<v8::Gather>(params, indices, selected_axis, updated_batch_dims);

// Set the node's name and apply complex type marking if needed
set_node_name(node.get_name(), gather);
auto complex_gather = make_shared<ComplexTypeMark>(gather, complex_type_mark->get_complex_part_type());
return {complex_gather};
}

return translate_basic_gather_op(node, axis, batch_dims);
}

Expand All @@ -62,7 +108,6 @@ OutputVector translate_gather_nd_op(const NodeContext& node) {
set_node_name(node.get_name(), gather_nd);
return {gather_nd};
}

} // namespace op
} // namespace tensorflow
} // namespace frontend
Expand Down
74 changes: 74 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_Gather.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,3 +79,77 @@ def test_gather(self, params, params_type, indices_type, ie_device, precision, i
self._test(*self.create_gather_net(**params, params_type=params_type, indices_type=indices_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

class TestComplexGather(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'real_params:0' in inputs_info
assert 'imag_params:0' in inputs_info
assert 'indices:0' in inputs_info
real_params_shape = inputs_info['real_params:0']
imag_params_shape = inputs_info['imag_params:0']
indices_shape = inputs_info['indices:0']
inputs_data = {}
inputs_data['real_params:0'] = rng.integers(-50, 50, real_params_shape).astype(np.float32)
inputs_data['imag_params:0'] = rng.integers(-50, 50, imag_params_shape).astype(np.float32)

inputs_data['indices:0'] = rng.integers(0, self.max_index, indices_shape).astype(self.indices_type)
return inputs_data


def create_gather_net(self, params_shape, params_type, indices_shape, indices_type, axis_value, batch_dims,
operation_type):
self.params_type = params_type
if params_type == str or params_type == np.str_:
params_type = tf.string
self.indices_type = indices_type
if batch_dims is None:
batch_dims = 0
if axis_value is None:
axis_value = 0
axis_norm = axis_value
if axis_norm < 0:
axis_norm += len(params_shape)
assert 0 <= axis_norm < len(params_shape), "Incorrect `axis` value for the test case"
self.max_index = params_shape[axis_norm]

tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
real_params = tf.compat.v1.placeholder(params_type, params_shape, 'real_params')
imag_params = tf.compat.v1.placeholder(params_type, params_shape, 'imag_params')
complex = tf.raw_ops.Complex(real=real_params, imag=imag_params)

indices = tf.compat.v1.placeholder(indices_type, indices_shape, 'indices')
if operation_type == "Gather":
tf.raw_ops.Gather(params=complex, indices=indices)
elif operation_type == "GatherV2":
axis = tf.constant(axis_value, dtype=tf.int32)
tf.raw_ops.GatherV2(params=complex, indices=indices, axis=axis, batch_dims=batch_dims)
else:
assert False, "Incorrect operation type is tested"

tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def

ref_net = None

return tf_net, ref_net

test_data_precommit = [
dict(params_shape=[4, 6], indices_shape=[], axis_value=None, batch_dims=None, operation_type='Gather'),
dict(params_shape=[3, 4, 6], indices_shape=[3, 4], axis_value=None, batch_dims=None, operation_type='Gather'),
dict(params_shape=[5, 4, 3], indices_shape=[5, 2, 1], axis_value=2, batch_dims=1, operation_type='GatherV2'),
dict(params_shape=[3, 2, 6, 4], indices_shape=[3, 2, 1, 3], axis_value=-1, batch_dims=-2,
operation_type='GatherV2'),
]

@pytest.mark.parametrize("params", test_data_precommit)
@pytest.mark.parametrize("params_type", [np.float32])
@pytest.mark.parametrize("indices_type", [np.int32, np.int64])
@pytest.mark.precommit
@pytest.mark.nightly
def test_gather(self, params, params_type, indices_type, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_gather_net(**params, params_type=params_type, indices_type=indices_type),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

Loading