Skip to content

Commit

Permalink
Support traceId-based r-values (#417)
Browse files Browse the repository at this point in the history
* Support traceId-based r-values

* Interface

* Fix javadoc

* Spotless

* More

* Clean

* Review
  • Loading branch information
trask authored Aug 19, 2022
1 parent bd08352 commit 71cac47
Show file tree
Hide file tree
Showing 14 changed files with 179 additions and 107 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,8 @@
@Immutable
final class ConsistentAlwaysOffSampler extends ConsistentSampler {

private ConsistentAlwaysOffSampler() {}

private static final ConsistentSampler INSTANCE = new ConsistentAlwaysOffSampler();

static ConsistentSampler getInstance() {
return INSTANCE;
ConsistentAlwaysOffSampler(RValueGenerator rValueGenerator) {
super(rValueGenerator);
}

@Override
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,8 @@
@Immutable
final class ConsistentAlwaysOnSampler extends ConsistentSampler {

private ConsistentAlwaysOnSampler() {}

private static final ConsistentSampler INSTANCE = new ConsistentAlwaysOnSampler();

static ConsistentSampler getInstance() {
return INSTANCE;
ConsistentAlwaysOnSampler(RValueGenerator rValueGenerator) {
super(rValueGenerator);
}

@Override
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,9 @@ final class ConsistentComposedAndSampler extends ConsistentSampler {
private final ConsistentSampler sampler2;
private final String description;

ConsistentComposedAndSampler(ConsistentSampler sampler1, ConsistentSampler sampler2) {
ConsistentComposedAndSampler(
ConsistentSampler sampler1, ConsistentSampler sampler2, RValueGenerator rValueGenerator) {
super(rValueGenerator);
this.sampler1 = requireNonNull(sampler1);
this.sampler2 = requireNonNull(sampler2);
this.description =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,9 @@ final class ConsistentComposedOrSampler extends ConsistentSampler {
private final ConsistentSampler sampler2;
private final String description;

ConsistentComposedOrSampler(ConsistentSampler sampler1, ConsistentSampler sampler2) {
ConsistentComposedOrSampler(
ConsistentSampler sampler1, ConsistentSampler sampler2, RValueGenerator rValueGenerator) {
super(rValueGenerator);
this.sampler1 = requireNonNull(sampler1);
this.sampler2 = requireNonNull(sampler2);
this.description =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,25 +21,15 @@ final class ConsistentParentBasedSampler extends ConsistentSampler {

private final String description;

/**
* Constructs a new consistent parent based sampler using the given root sampler.
*
* @param rootSampler the root sampler
*/
ConsistentParentBasedSampler(ConsistentSampler rootSampler) {
this(rootSampler, RandomGenerator.getDefault());
}

/**
* Constructs a new consistent parent based sampler using the given root sampler and the given
* thread-safe random generator.
*
* @param rootSampler the root sampler
* @param threadSafeRandomGenerator a thread-safe random generator
* @param rValueGenerator the function to use for generating the r-value
*/
ConsistentParentBasedSampler(
ConsistentSampler rootSampler, RandomGenerator threadSafeRandomGenerator) {
super(threadSafeRandomGenerator);
ConsistentParentBasedSampler(ConsistentSampler rootSampler, RValueGenerator rValueGenerator) {
super(rValueGenerator);
this.rootSampler = requireNonNull(rootSampler);
this.description =
"ConsistentParentBasedSampler{rootSampler=" + rootSampler.getDescription() + '}';
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,29 +15,25 @@ final class ConsistentProbabilityBasedSampler extends ConsistentSampler {
private final int upperPValue;
private final double probabilityToUseLowerPValue;
private final String description;
private final RandomGenerator randomGenerator;

/**
* Constructor.
*
* @param samplingProbability the sampling probability
* @param rValueGenerator the function to use for generating the r-value
*/
ConsistentProbabilityBasedSampler(double samplingProbability) {
this(samplingProbability, RandomGenerator.getDefault());
}

/**
* Constructor.
*
* @param samplingProbability the sampling probability
* @param randomGenerator a random generator
*/
ConsistentProbabilityBasedSampler(double samplingProbability, RandomGenerator randomGenerator) {
super(randomGenerator);
ConsistentProbabilityBasedSampler(
double samplingProbability,
RValueGenerator rValueGenerator,
RandomGenerator randomGenerator) {
super(rValueGenerator);
if (samplingProbability < 0.0 || samplingProbability > 1.0) {
throw new IllegalArgumentException("Sampling probability must be in range [0.0, 1.0]!");
}
this.description =
String.format("ConsistentProbabilityBasedSampler{%.6f}", samplingProbability);
this.randomGenerator = randomGenerator;

lowerPValue = getLowerBoundP(samplingProbability);
upperPValue = getUpperBoundP(samplingProbability);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,37 +85,25 @@ public State(double effectiveWindowCount, double effectiveWindowNanos, long last
private final double inverseAdaptationTimeNanos;
private final double targetSpansPerNanosecondLimit;
private final AtomicReference<State> state;
private final RandomGenerator randomGenerator;

/**
* Constructor.
*
* @param targetSpansPerSecondLimit the desired spans per second limit
* @param adaptationTimeSeconds the typical time to adapt to a new load (time constant used for
* exponential smoothing)
*/
ConsistentRateLimitingSampler(double targetSpansPerSecondLimit, double adaptationTimeSeconds) {
this(
targetSpansPerSecondLimit,
adaptationTimeSeconds,
RandomGenerator.getDefault(),
System::nanoTime);
}

/**
* Constructor.
*
* @param targetSpansPerSecondLimit the desired spans per second limit
* @param adaptationTimeSeconds the typical time to adapt to a new load (time constant used for
* exponential smoothing)
* @param rValueGenerator the function to use for generating the r-value
* @param randomGenerator a random generator
* @param nanoTimeSupplier a supplier for the current nano time
*/
ConsistentRateLimitingSampler(
double targetSpansPerSecondLimit,
double adaptationTimeSeconds,
RValueGenerator rValueGenerator,
RandomGenerator randomGenerator,
LongSupplier nanoTimeSupplier) {
super(randomGenerator);
super(rValueGenerator);

if (targetSpansPerSecondLimit < 0.0) {
throw new IllegalArgumentException("Limit for sampled spans per second must be nonnegative!");
Expand All @@ -133,6 +121,8 @@ public State(double effectiveWindowCount, double effectiveWindowNanos, long last
this.targetSpansPerNanosecondLimit = 1e-9 * targetSpansPerSecondLimit;

this.state = new AtomicReference<>(new State(0, 0, nanoTimeSupplier.getAsLong()));

this.randomGenerator = randomGenerator;
}

private State updateState(State oldState, long currentNanoTime) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,17 +28,37 @@ public abstract class ConsistentSampler implements Sampler {
*
* @return a sampler
*/
public static final ConsistentSampler alwaysOn() {
return ConsistentAlwaysOnSampler.getInstance();
public static ConsistentSampler alwaysOn() {
return alwaysOn(RValueGenerators.getDefault());
}

/**
* Returns a {@link ConsistentSampler} that samples all spans.
*
* @param rValueGenerator the function to use for generating the r-value
* @return a sampler
*/
public static ConsistentSampler alwaysOn(RValueGenerator rValueGenerator) {
return new ConsistentAlwaysOnSampler(rValueGenerator);
}

/**
* Returns a {@link ConsistentSampler} that does not sample any span.
*
* @return a sampler
*/
public static ConsistentSampler alwaysOff() {
return alwaysOff(RValueGenerators.getDefault());
}

/**
* Returns a {@link ConsistentSampler} that does not sample any span.
*
* @param rValueGenerator the function to use for generating the r-value
* @return a sampler
*/
public static final ConsistentSampler alwaysOff() {
return ConsistentAlwaysOffSampler.getInstance();
public static ConsistentSampler alwaysOff(RValueGenerator rValueGenerator) {
return new ConsistentAlwaysOffSampler(rValueGenerator);
}

/**
Expand All @@ -47,20 +67,21 @@ public static final ConsistentSampler alwaysOff() {
* @param samplingProbability the sampling probability
* @return a sampler
*/
public static final ConsistentSampler probabilityBased(double samplingProbability) {
return new ConsistentProbabilityBasedSampler(samplingProbability);
public static ConsistentSampler probabilityBased(double samplingProbability) {
return probabilityBased(samplingProbability, RValueGenerators.getDefault());
}

/**
* Returns a {@link ConsistentSampler} that samples each span with a fixed probability.
*
* @param samplingProbability the sampling probability
* @param randomGenerator a random generator
* @param rValueGenerator the function to use for generating the r-value
* @return a sampler
*/
static final ConsistentSampler probabilityBased(
double samplingProbability, RandomGenerator randomGenerator) {
return new ConsistentProbabilityBasedSampler(samplingProbability, randomGenerator);
public static ConsistentSampler probabilityBased(
double samplingProbability, RValueGenerator rValueGenerator) {
return new ConsistentProbabilityBasedSampler(
samplingProbability, rValueGenerator, RandomGenerator.getDefault());
}

/**
Expand All @@ -69,20 +90,20 @@ static final ConsistentSampler probabilityBased(
*
* @param rootSampler the root sampler
*/
public static final ConsistentSampler parentBased(ConsistentSampler rootSampler) {
return new ConsistentParentBasedSampler(rootSampler);
public static ConsistentSampler parentBased(ConsistentSampler rootSampler) {
return parentBased(rootSampler, RValueGenerators.getDefault());
}

/**
* Returns a new {@link ConsistentSampler} that respects the sampling decision of the parent span
* or falls-back to the given sampler if it is a root span.
*
* @param rootSampler the root sampler
* @param randomGenerator a random generator
* @param rValueGenerator the function to use for generating the r-value
*/
static final ConsistentSampler parentBased(
ConsistentSampler rootSampler, RandomGenerator randomGenerator) {
return new ConsistentParentBasedSampler(rootSampler, randomGenerator);
public static ConsistentSampler parentBased(
ConsistentSampler rootSampler, RValueGenerator rValueGenerator) {
return new ConsistentParentBasedSampler(rootSampler, rValueGenerator);
}

/**
Expand All @@ -93,9 +114,10 @@ static final ConsistentSampler parentBased(
* @param adaptationTimeSeconds the typical time to adapt to a new load (time constant used for
* exponential smoothing)
*/
public static final ConsistentSampler rateLimited(
public static ConsistentSampler rateLimited(
double targetSpansPerSecondLimit, double adaptationTimeSeconds) {
return new ConsistentRateLimitingSampler(targetSpansPerSecondLimit, adaptationTimeSeconds);
return rateLimited(
targetSpansPerSecondLimit, adaptationTimeSeconds, RValueGenerators.getDefault());
}

/**
Expand All @@ -105,16 +127,37 @@ public static final ConsistentSampler rateLimited(
* @param targetSpansPerSecondLimit the desired spans per second limit
* @param adaptationTimeSeconds the typical time to adapt to a new load (time constant used for
* exponential smoothing)
* @param randomGenerator a random generator
* @param rValueGenerator the function to use for generating the r-value
*/
public static ConsistentSampler rateLimited(
double targetSpansPerSecondLimit,
double adaptationTimeSeconds,
RValueGenerator rValueGenerator) {
return rateLimited(
targetSpansPerSecondLimit, adaptationTimeSeconds, rValueGenerator, System::nanoTime);
}

/**
* Returns a new {@link ConsistentSampler} that attempts to adjust the sampling probability
* dynamically to meet the target span rate.
*
* @param targetSpansPerSecondLimit the desired spans per second limit
* @param adaptationTimeSeconds the typical time to adapt to a new load (time constant used for
* exponential smoothing)
* @param rValueGenerator the function to use for generating the r-value
* @param nanoTimeSupplier a supplier for the current nano time
*/
static final ConsistentSampler rateLimited(
static ConsistentSampler rateLimited(
double targetSpansPerSecondLimit,
double adaptationTimeSeconds,
RandomGenerator randomGenerator,
RValueGenerator rValueGenerator,
LongSupplier nanoTimeSupplier) {
return new ConsistentRateLimitingSampler(
targetSpansPerSecondLimit, adaptationTimeSeconds, randomGenerator, nanoTimeSupplier);
targetSpansPerSecondLimit,
adaptationTimeSeconds,
rValueGenerator,
RandomGenerator.getDefault(),
nanoTimeSupplier);
}

/**
Expand All @@ -136,7 +179,8 @@ public ConsistentSampler and(ConsistentSampler otherConsistentSampler) {
if (otherConsistentSampler == this) {
return this;
}
return new ConsistentComposedAndSampler(this, otherConsistentSampler);
return new ConsistentComposedAndSampler(
this, otherConsistentSampler, RValueGenerators.getDefault());
}

/**
Expand All @@ -158,20 +202,17 @@ public ConsistentSampler or(ConsistentSampler otherConsistentSampler) {
if (otherConsistentSampler == this) {
return this;
}
return new ConsistentComposedOrSampler(this, otherConsistentSampler);
return new ConsistentComposedOrSampler(
this, otherConsistentSampler, RValueGenerators.getDefault());
}

protected final RandomGenerator randomGenerator;

protected ConsistentSampler(RandomGenerator randomGenerator) {
this.randomGenerator = requireNonNull(randomGenerator);
}
private final RValueGenerator rValueGenerator;

protected ConsistentSampler() {
this(RandomGenerator.getDefault());
protected ConsistentSampler(RValueGenerator rValueGenerator) {
this.rValueGenerator = requireNonNull(rValueGenerator);
}

private static final boolean isInvariantViolated(
private static boolean isInvariantViolated(
OtelTraceState otelTraceState, boolean isParentSampled) {
if (otelTraceState.hasValidR() && otelTraceState.hasValidP()) {
// if valid p- and r-values are given, they must be consistent with the isParentSampled flag
Expand Down Expand Up @@ -212,8 +253,7 @@ public final SamplingResult shouldSample(

// generate new r-value if not available
if (!otelTraceState.hasValidR()) {
otelTraceState.setR(
Math.min(randomGenerator.numberOfLeadingZerosOfRandomLong(), OtelTraceState.getMaxR()));
otelTraceState.setR(Math.min(rValueGenerator.generate(traceId), OtelTraceState.getMaxR()));
}

// determine and set new p-value that is used for the sampling decision
Expand Down
Loading

0 comments on commit 71cac47

Please sign in to comment.