-
Notifications
You must be signed in to change notification settings - Fork 649
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
CodeCamp2023-554 #2402
Open
gachiemchiep
wants to merge
3
commits into
open-mmlab:main
Choose a base branch
from
gachiemchiep:codecamp_basicvsr
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
CodeCamp2023-554 #2402
Changes from 1 commit
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
12 changes: 12 additions & 0 deletions
12
configs/mmagic/super-resolution/video-super-resolution_tensorrt_dynamic-32x32-512x512.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
_base_ = ['./super-resolution_dynamic.py', '../../_base_/backends/tensorrt.py'] | ||
codebase_config = dict(type='mmagic', task='VideoSuperResolution') | ||
backend_config = dict( | ||
common_config=dict(max_workspace_size=1 << 30), | ||
model_inputs=[ | ||
dict( | ||
input_shapes=dict( | ||
input=dict( | ||
min_shape=[1, 3, 32, 32], | ||
opt_shape=[1, 3, 256, 256], | ||
max_shape=[1, 3, 512, 512]))) | ||
]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,6 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from mmdeploy.codebase.mmagic.deploy.mmediting import MMEditing | ||
from mmdeploy.codebase.mmagic.deploy.super_resolution import SuperResolution | ||
from mmdeploy.codebase.mmagic.deploy.video_super_resolution import VideoSuperResolution | ||
|
||
__all__ = ['MMEditing', 'SuperResolution'] | ||
__all__ = ['MMEditing', 'SuperResolution', 'VideoSuperResolution'] |
244 changes: 244 additions & 0 deletions
244
mmdeploy/codebase/mmagic/deploy/video_super_resolution.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from copy import deepcopy | ||
from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union | ||
|
||
import mmengine | ||
import numpy as np | ||
import torch | ||
from mmengine import Config | ||
from mmengine.dataset import pseudo_collate | ||
from mmengine.model import BaseDataPreprocessor | ||
import os.path as osp | ||
import mmcv | ||
from typing import List | ||
from mmengine.dataset import Compose | ||
from mmengine.structures import BaseDataElement | ||
from mmagic.structures import DataSample | ||
|
||
|
||
from mmdeploy.codebase.base import BaseTask | ||
from mmdeploy.codebase.mmagic.deploy.super_resolution import SuperResolution | ||
from mmdeploy.codebase.mmagic.deploy.mmediting import MMAGIC_TASK | ||
from mmdeploy.utils import Task, get_input_shape, get_root_logger | ||
from mmagic.apis.inferencers.base_mmagic_inferencer import ( | ||
InputsType, | ||
PredType, | ||
ResType, | ||
) | ||
from mmagic.apis.inferencers.inference_functions import VIDEO_EXTENSIONS, pad_sequence | ||
import glob | ||
import os | ||
from mmagic.utils import tensor2img | ||
import cv2 | ||
from mmengine.utils import ProgressBar | ||
from mmengine.logging import MMLogger | ||
from .super_resolution import process_model_config | ||
|
||
|
||
@MMAGIC_TASK.register_module(Task.VIDEO_SUPER_RESOLUTION.value) | ||
class VideoSuperResolution(SuperResolution): | ||
"""BaseTask class of video super resolution task. | ||
|
||
Args: | ||
model_cfg (mmengine.Config): Model config file. | ||
deploy_cfg (mmengine.Config): Deployment config file. | ||
device (str): A string specifying device type. | ||
""" | ||
|
||
extra_parameters = dict( | ||
start_idx=0, filename_tmpl="{:08d}.png", window_size=0, max_seq_len=None | ||
) | ||
|
||
def __init__( | ||
self, model_cfg: mmengine.Config, deploy_cfg: mmengine.Config, device: str | ||
): | ||
super(VideoSuperResolution, self).__init__(model_cfg, deploy_cfg, device) | ||
|
||
def preprocess(self, video: InputsType) -> Dict: | ||
"""Process the inputs into a model-feedable format. | ||
|
||
Args: | ||
video(InputsType): Video to be restored by models. | ||
|
||
Returns: | ||
results(InputsType): Results of preprocess. | ||
""" | ||
# build the data pipeline | ||
if self.model_cfg.get("demo_pipeline", None): | ||
test_pipeline = self.model_cfg.demo_pipeline | ||
elif self.model_cfg.get("test_pipeline", None): | ||
test_pipeline = self.model_cfg.test_pipeline | ||
else: | ||
test_pipeline = self.model_cfg.val_pipeline | ||
|
||
# check if the input is a video | ||
file_extension = osp.splitext(video)[1] | ||
if file_extension in VIDEO_EXTENSIONS: | ||
video_reader = mmcv.VideoReader(video) | ||
# load the images | ||
data = dict(img=[], img_path=None, key=video) | ||
for frame in video_reader: | ||
data["img"].append(np.flip(frame, axis=2)) | ||
|
||
# remove the data loading pipeline | ||
tmp_pipeline = [] | ||
for pipeline in test_pipeline: | ||
if pipeline["type"] not in [ | ||
"GenerateSegmentIndices", | ||
"LoadImageFromFile", | ||
]: | ||
tmp_pipeline.append(pipeline) | ||
test_pipeline = tmp_pipeline | ||
else: | ||
# the first element in the pipeline must be | ||
# 'GenerateSegmentIndices' | ||
if test_pipeline[0]["type"] != "GenerateSegmentIndices": | ||
raise TypeError( | ||
"The first element in the pipeline must be " | ||
f'"GenerateSegmentIndices", but got ' | ||
f'"{test_pipeline[0]["type"]}".' | ||
) | ||
|
||
# specify start_idx and filename_tmpl | ||
test_pipeline[0]["start_idx"] = self.extra_parameters["start_idx"] | ||
test_pipeline[0]["filename_tmpl"] = self.extra_parameters["filename_tmpl"] | ||
|
||
# prepare data | ||
sequence_length = len(glob.glob(osp.join(video, "*"))) | ||
lq_folder = osp.dirname(video) | ||
key = osp.basename(video) | ||
data = dict( | ||
img_path=lq_folder, gt_path="", key=key, sequence_length=sequence_length | ||
) | ||
|
||
# compose the pipeline | ||
test_pipeline = Compose(test_pipeline) | ||
data = test_pipeline(data) | ||
results = data["inputs"].unsqueeze(0) / 255.0 # in cpu | ||
data["inputs"] = results | ||
return data | ||
|
||
def create_input( | ||
self, | ||
video: InputsType, | ||
input_shape: Sequence[int] = None, | ||
data_preprocessor: Optional[BaseDataPreprocessor] = None, | ||
) -> Tuple[Dict, torch.Tensor]: | ||
"""Create input for editing processor. | ||
|
||
Args: | ||
imgs (str | np.ndarray): Input image(s). | ||
input_shape (Sequence[int] | None): A list of two integer in | ||
(width, height) format specifying input shape. Defaults to `None`. | ||
data_preprocessor (BaseDataPreprocessor): The data preprocessor | ||
of the model. Default to `None`. | ||
|
||
Returns: | ||
tuple: (data, img), meta information for the input image and input. | ||
""" | ||
data = self.preprocess(video) | ||
return data, BaseTask.get_tensor_from_input(data) | ||
|
||
def forward( | ||
self, | ||
inputs: torch.Tensor, | ||
data_samples: Optional[List[BaseDataElement]] = None, | ||
mode: str = "predict", | ||
*args, | ||
**kwargs, | ||
) -> list: | ||
"""Run test inference for restorer. | ||
|
||
We want forward() to output an image or a evaluation result. | ||
When test_mode is set, the output is evaluation result. Otherwise | ||
it is an image. | ||
|
||
Args: | ||
inputs (torch.Tensor): A list contains input image(s) | ||
in [C x H x W] format. | ||
data_samples (List[BaseDataElement], optional): The data samples. | ||
Defaults to None. | ||
mode (str, optional): forward mode, only support `predict`. | ||
*args: Other arguments. | ||
**kwargs: Other key-pair arguments. | ||
|
||
Returns: | ||
list | dict: High resolution image or a evaluation results. | ||
""" | ||
outputs = [] | ||
|
||
if self.extra_parameters["window_size"] > 0: # sliding window framework | ||
data = pad_sequence(inputs, self.extra_parameters["window_size"]) | ||
# yapf: disable | ||
for i in range(0, data.size(1) - 2 * (self.extra_parameters['window_size'] // 2)): # noqa | ||
# yapf: enable | ||
data_i = data[:, i:i + | ||
self.extra_parameters['window_size']].to( | ||
self.device) | ||
outputs.append( | ||
self.wrapper.invoke( | ||
data_i.permute(1, 2, 0).contiguous().detach().cpu().numpy())) | ||
else: # recurrent framework | ||
if self.extra_parameters["max_seq_len"] is None: | ||
outputs = self.model(inputs=inputs.to(self.device), mode="tensor").cpu() | ||
else: | ||
for i in range(0, inputs.size(1), self.extra_parameters["max_seq_len"]): | ||
data_i = inputs[:, i : i + self.extra_parameters["max_seq_len"]].to( | ||
self.device | ||
) | ||
outputs.append( | ||
self.wrapper.invoke( | ||
data_i.permute(1, 2, 0).contiguous().detach().cpu().numpy() | ||
) | ||
) | ||
|
||
outputs = torch.stack(outputs, 0) | ||
outputs = DataSample(pred_img=outputs.cpu()).split() | ||
|
||
for data_sample, pred in zip(data_samples, outputs): | ||
data_sample.output = pred | ||
return data_samples | ||
|
||
def visualize(self, preds: PredType, result_out_dir: str = "") -> List[np.ndarray]: | ||
"""Visualize result of a model. mmagic does not have visualizer, so | ||
write visualize function directly. | ||
|
||
Args: | ||
model (nn.Module): Input model. | ||
image (str | np.ndarray): Input image to draw predictions on. | ||
result (list | np.ndarray): A list of result. | ||
output_file (str): Output file to save drawn image. | ||
window_name (str): The name of visualization window. Defaults to | ||
an empty string. | ||
show_result (bool): Whether to show result in windows, defaults | ||
to `False`. | ||
""" | ||
|
||
file_extension = os.path.splitext(result_out_dir)[1] | ||
mmengine.utils.mkdir_or_exist(osp.dirname(result_out_dir)) | ||
prog_bar = ProgressBar(preds.size(1)) | ||
if file_extension in VIDEO_EXTENSIONS: # save as video | ||
h, w = preds.shape[-2:] | ||
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | ||
video_writer = cv2.VideoWriter(result_out_dir, fourcc, 25, (w, h)) | ||
for i in range(0, preds.size(1)): | ||
img = tensor2img(preds[:, i, :, :, :]) | ||
video_writer.write(img.astype(np.uint8)) | ||
prog_bar.update() | ||
cv2.destroyAllWindows() | ||
video_writer.release() | ||
else: | ||
for i in range( | ||
self.extra_parameters["start_idx"], | ||
self.extra_parameters["start_idx"] + preds.size(1), | ||
): | ||
output_i = preds[:, i - self.extra_parameters["start_idx"], :, :, :] | ||
output_i = tensor2img(output_i) | ||
filename_tmpl = self.extra_parameters["filename_tmpl"] | ||
save_path_i = f"{result_out_dir}/{filename_tmpl.format(i)}" | ||
mmcv.imwrite(output_i, save_path_i) | ||
prog_bar.update() | ||
|
||
logger: MMLogger = MMLogger.get_current_instance() | ||
logger.info(f"Output video is save at {result_out_dir}.") | ||
return [] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this task class should not have forward function. You could add a
video_super_resolution_model.py
and put the end2endmodel thereThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks. I will change based on your recommendatation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I have added the end2endmodel in video_super_resolution_model.py. and move the foward function there. Unfortunately, I have met same problem