-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d114fa4
commit f4a29d5
Showing
1 changed file
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "51b8f9b4-c76a-4a78-97fc-652a0ad8f9d7", | ||
"metadata": {}, | ||
"source": [ | ||
"The CERA workflow for stations involved the following station filtering and adjustments:\n", | ||
"- Get by parameters\n", | ||
"- Get by region (coastal)\n", | ||
"- Adjust by vertical datum\n", | ||
"- Adjust time zone\n", | ||
"- Station active vs inactive" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f8dfa70e-f62f-453d-b107-b0eadb6e1b40", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from datetime import datetime, timedelta\n", | ||
"from matplotlib import pyplot\n", | ||
"\n", | ||
"import geopandas as gpd\n", | ||
"\n", | ||
"from searvey import usgs, stations" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0e336dca-652b-484c-b0c4-c986954d4553", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))\n", | ||
"us = world[world.name.isin(['United States of America', 'Puerto Rico'])]\n", | ||
"us_coast = us.boundary.intersection(world.unary_union.boundary)\n", | ||
"ax = world.plot(color='k', alpha=0.1)\n", | ||
"us.plot(ax=ax, color='b', alpha=0.2)\n", | ||
"us_coast.plot(ax=ax, color='r')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a1f676ca-3b2f-47fa-90b6-dfcae780202a", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"params_of_interest = ['62620', '62615']\n", | ||
"region_of_interest = us_coast.unary_union.buffer(0.5) # Buffer coast lines to overlap with some stations." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "58d786be-3560-499e-b787-a61436f2b4c0", | ||
"metadata": {}, | ||
"source": [ | ||
"Note that currently USGS implemented all parameters of interest by CERA workflow, for further filtering one needs to fetch all and then filter. Also note that currently `stations.get_stations` API doesn't have paramter information." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ac8a7ad7-07e0-4e4f-b674-0e55bd70388a", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"#usgs_stations = stations.get_stations(providers='USGS', region=region_of_interest)\n", | ||
"usgs_stations = usgs.get_usgs_stations(region=region_of_interest)\n", | ||
"usgs_stations" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7c43b139-7bbe-4a2f-9129-6f80b6663356", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ax2 = us.plot()\n", | ||
"usgs_stations.plot(ax=ax2, color='r')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "986e3b94-9d38-44e4-9f51-54d4c86dac63", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"usgs_stations_w_param = usgs_stations[usgs_stations.parm_cd.isin(params_of_interest)]\n", | ||
"is_active = (datetime.now() - usgs_stations_w_param.end_date) < timedelta(days=3)\n", | ||
"usgs_stations_of_interest = usgs_stations_w_param[is_active]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f8c83ab7-2034-4cd1-9636-c655a1fb2d72", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ax3 = us.plot()\n", | ||
"usgs_stations_of_interest.plot(ax=ax3, color='r')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9c256fc7-cc4f-4b59-b0ee-57abb64d303c", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"usgs_stations_of_interest.columns" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ae5da10b-6718-4ff6-9683-82477f397945", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"data = usgs.get_usgs_data(usgs_metadata=usgs_stations_of_interest)\n", | ||
"data = data.assign(vdatum=('site_no', usgs_stations_of_interest.drop_duplicates(subset='site_no').set_index('site_no').alt_datum_cd.loc[data.site_no]))\n", | ||
"data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3a30559a-0619-4200-a2b5-b11874a48281", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def adjust_vdatum(ds):\n", | ||
" # TODO: Adjust \"value\"s based on the \"vdatum\" for the \"site_no\"\n", | ||
" return ds" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c44ea17a-2031-4dcb-89ae-d397086b312a", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"adjusted_data = adjust_vdatum(data)\n", | ||
"adjusted_data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e32605ef-28d7-46ba-a49d-3ed98e205fe6", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"plot_data = []\n", | ||
"for site_no in adjusted_data.site_no.values:\n", | ||
" for code in adjusted_data.code.values:\n", | ||
" for option in adjusted_data.option.values:\n", | ||
" ds = adjusted_data.sel(site_no=site_no, code=code, option=option).squeeze()\n", | ||
" if ds.value.isnull().all():\n", | ||
" continue\n", | ||
" plot_data.append(ds.to_dataframe())\n", | ||
" \n", | ||
"\n", | ||
"ncols = 3\n", | ||
"fig, axes = pyplot.subplots(ncols=ncols, nrows=len(plot_data) // ncols + 1, figsize=(15, 150))\n", | ||
"\n", | ||
"for ds, ax in zip(plot_data, axes.ravel()):\n", | ||
" ds.value.dropna().plot(ax=ax, style='x', xlabel='datetime', ylabel=f'{ds.code.iloc[0]} ({ds.unit.iloc[0]})')\n", | ||
"fig.tight_layout()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "searvey", | ||
"language": "python", | ||
"name": "searvey" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |