Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement einstein summation notation kernel for 2 input arguments #200

Merged
merged 9 commits into from
Oct 1, 2024
1 change: 1 addition & 0 deletions sharktank/sharktank/kernels/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

from .attention import *
from .einsum_2args_q4 import *
from .mmtfp import *
from .mmt_block_scaled_offset_q4 import *
from .mmt_block_scaled_q8 import *
Expand Down
259 changes: 259 additions & 0 deletions sharktank/sharktank/kernels/einsum_2args_q4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
# Copyright 2024 Advanced Micro Devices, Inc.
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

from .base import *

import torch

__all__ = [
"einsum_2args_q4",
]


def einsum_util(einsum_str):
es_in, es_out = einsum_str.split("->")
es_in0, es_in1 = es_in.split(",")
es_set = set(es_out)
es_set = es_set.union(es_in0)
es_set = es_set.union(es_in1)
size = len(es_set)
imap = dict()
lmap = dict()
for i in range(len(es_out)):
imap[i] = es_out[i]
lmap[es_out[i]] = i
count = len(es_out)
for c in es_set:
if c not in lmap:
imap[count] = c
lmap[c] = count
count += 1

assert count == len(es_set)

in0_idx = [lmap[i] for i in es_in0]
in1_idx = [lmap[i] for i in es_in1]
out_idx = [lmap[i] for i in es_out]

input_idx_str = ", ".join(["d" + str(i) for i in range(size)])
in0_idx_str = ", ".join(["d" + str(i) for i in in0_idx])
in1_idx_str = ", ".join(["d" + str(i) for i in in1_idx])
out_idx_str = ", ".join(["d" + str(i) for i in out_idx])

iterators = ", ".join(
['"parallel"' if i in out_idx else '"reduction"' for i in range(size)]
)

affine_map_in0 = f"affine_map<({input_idx_str}) -> ({in0_idx_str})>"
affine_map_in1 = f"affine_map<({input_idx_str}) -> ({in1_idx_str})>"
affine_map_out = f"affine_map<({input_idx_str}) -> ({out_idx_str})>"

indexing_maps = f"""{affine_map_in0},
{affine_map_in1},
{affine_map_out}
"""
KyleHerndon marked this conversation as resolved.
Show resolved Hide resolved

out_dyn_dim_size_str = ""
for c in es_out:
if c in es_in0:
out_dyn_dim_size_str += "%a" + str(es_in0.find(c)) + ","
elif c in es_in1:
if es_in1.find(c) == len(es_in1) - 1:
out_dyn_dim_size_str += "%b_unblocked_dim,"
else:
out_dyn_dim_size_str += "%b" + str(es_in1.find(c)) + ","
else:
raise Exception("Invalid einsum string")
out_dyn_dim_size_str = out_dyn_dim_size_str[:-1]
return (
(in0_idx, in1_idx, out_idx),
iterators,
indexing_maps,
out_dyn_dim_size_str,
)


@CustomOp.register(library=LIBRARY)
class einsum_2args_q4(CustomOp):
"""Einsum that takes two tensor inputs and returns one tensor.

The first input is expected to be a normal tensor.

The second input corresponds to the BlockScaledLayout and operates on planar `d`
and `qs` tensors as specified there:

* `d`: `[..., K // BLOCK_SIZE, 1]`
* `qs`: `[..., K // BLOCK_SIZE, BLOCK_SIZE // 2]` (of uint8)
* `m`: `[..., K // BLOCK_SIZE, 1]`
"""

signature = (
"einsum_2args_q4(Tensor a, Tensor d, Tensor qs, Tensor m, str es) -> (Tensor)"
)

def select(self, ksel: KernelSelection):
a_desc = ksel.arg_tensor(0) # Shape [b, ] m, k
d_desc = ksel.arg_tensor(1) # Shape [N, K // BLOCK_SIZE, 1]
qs_desc = ksel.arg_tensor(2) # Shape [N, K // BLOCK_SIZE, BLOCK_SIZE // 2]
m_desc = ksel.arg_tensor(3) # Shape [N, K // BLOCK_SIZE, 1]
einsum_str = ksel.attr_str(4).v

# a arg
a_dims = a_desc.t.shape
torch._check(
a_desc.t.dtype.is_floating_point,
lambda: f"einsum_2args_q4 arg 'a': Expected floating point (got {a_desc.t.dtype})",
)

# qs arg
*qs_dims, qs_group0, qs_bs_div_2 = qs_desc.t.shape
block_size = qs_bs_div_2 * 2

# d arg
*d_dims, d_group0, d_one = d_desc.t.shape
torch._check(
d_group0 == qs_group0 and d_one == 1 and len(d_dims) == len(qs_dims),
lambda: f"einsum_2args_q4 arg 'd': Incorrect shape (got {d_desc.t.shape})",
)

# m arg
*m_dims, m_group0, m_one = m_desc.t.shape
torch._check(
m_desc.t.dtype == d_desc.t.dtype and len(m_dims) == len(qs_dims),
lambda: f"einsum_2args_q4 arg 'm': Incorrect dtype (got {m_desc.t.dtype})",
)
# einsum_str
torch._check(
einsum_str.count(",") == 1 and einsum_str.count("->") == 1,
lambda: f"einsum_2args_q4 arg 'einsum_str': Expected format '{{}},{{}}->{{}}' (got '{einsum_str}')",
)

es_in, es_out = einsum_str.split("->")
es_in0, es_in1 = es_in.split(",")
es_set = set(es_out)

shp = qs_desc.t.shape
b_dims = list(shp[:-2]) + [shp[-2] * block_size]
torch._check(
len(es_in0) == len(a_desc.t.shape)
and len(es_in1)
== len(qs_desc.t.shape)
- 1, # The quantized shape is larger until the blocks are collapsed
lambda: f"einsum_2args_q4 arg 'einsum_str': Einsum str dimensions do not match input dimensions (got '{einsum_str}' with inputs: {a_desc.t.shape} and {b_dims})",
)
torch._check(
len(es_in0) == len(set(es_in0))
and len(es_in1) == len(set(es_in1))
and len(es_in0) != 0
and len(es_in1) != 0,
lambda: f"einsum_2args_q4 arg 'einsum_str': Unsupported einsum str (got '{einsum_str}')",
)

# Check corresponding dimensions match
for i in range(len(es_in0)):
a_dim = a_dims[i]
c = es_in0[i]
pos = es_in1.find(c)
if pos >= 0:
b_dim = b_dims[pos]
torch._check(
a_dim == b_dim,
lambda: f"einsum_2args_q4 arg 'einsum_str': Einsum str dimensions do not match input dim for idx {c} (got '{einsum_str}' with inputs: {a_desc.t.shape} and {b_dims})",
)

# Determine the output shape by referencing corresponding input shapes
out_dims = []
for c in es_out:
pos0 = es_in0.find(c)
pos1 = es_in1.find(c)
a_dim = a_dims[pos0]
b_dim = b_dims[pos1]
if pos0 >= 0:
out_dims.append(a_dim)
elif pos1 >= 0:
out_dims.append(b_dim)
else:
torch._check(
False,
lambda: f"einsum_2args_q4 arg 'einsum_str': output indices must be in input indices (got '{einsum_str}')",
)

# Specialize on BS
qs_desc.specialize_dims(-1)
d_desc.specialize_dims(-1)
m_desc.specialize_dims(-1)

# Shape batch..., m, n
c_desc = ksel.return_new_tensor(out_dims, dtype=a_desc.t.dtype)

def generate(self, ksel: KernelSelection, kb: KernelBuilder):
a = kb.arg_value(0)
a_tensor_type = RankedTensorType(a.type)
d = kb.arg_value(1)
d_tensor_type = RankedTensorType(d.type)
qs = kb.arg_value(2)
qs_tensor_type = RankedTensorType(qs.type)
einsum_str = ksel.arg_descs[4].v
# einsum_str = "mek,menk->men"

es_in, es_out = einsum_str.split("->")
es_in0, es_in1 = es_in.split(",")

es_name = "_".join([es_in0, es_in1, es_out])

(
(es_0, es_1, es_2),
einsum_iterators,
einsum_indexing_maps,
oddss,
) = einsum_util(einsum_str)

rank1 = len(es_1)
dequant_iterators = ", ".join(
['"parallel"' for i in range(rank1 + 1)]
) # rank + 1 because of the group dimensions
input_idx_str = ", ".join(["d" + str(i) for i in range(rank1 + 1)])
broadcast_idx_str = ", ".join(
["d" + str(i) if i != rank1 else "0" for i in range(rank1 + 1)]
)
affine_map_parallel = f"affine_map<({input_idx_str}) -> ({input_idx_str})>"
affine_map_broadcast = f"affine_map<({input_idx_str}) -> ({broadcast_idx_str})>"
dequant_indexing_maps = f"""{affine_map_broadcast},
{affine_map_broadcast},
{affine_map_parallel},
{affine_map_parallel}"""

size_str = "x".join("?" for i in range(rank1 - 2))

rank = a_tensor_type.rank
*n_dims, group0, bs_i8 = qs_tensor_type.shape
bs = bs_i8 * 2 # 2 nibbles per byte.
group = group0 * bs
a_type_str = str(a_tensor_type.element_type)
scale_type_str = str(d_tensor_type.element_type)

template_file = "einsum_2args_q4.mlir"
target_function_name = f"sharktank_einsum_2args_q4_{es_name}_{bs}_{a_type_str}"

target_function = inline_template_function(
kb,
template_file,
target_function_name,
bs=bs,
bs_i8=bs_i8,
a_type=a_type_str,
scale_type=scale_type_str,
dequant_indexing_maps=dequant_indexing_maps,
dequant_iterator_types=dequant_iterators,
einsum_indexing_maps=einsum_indexing_maps,
einsum_iterator_types=einsum_iterators,
es_name=es_name,
a_size=len(es_in0),
b_size=len(es_in1),
c_size=len(es_out),
out_dyn_dim_size_str=oddss,
)
kb.yield_results(*call_function(target_function, *kb.arg_bindings))
104 changes: 104 additions & 0 deletions sharktank/sharktank/kernels/templates/einsum_2args_q4.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
// Copyright 2024 Advanced Micro Devices, Inc.
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

{% set accum_type = "f32" %}

!lowp_type = i4
!a_type = {{a_type}}
!scale_type = {{scale_type}}
!accum_type = {{accum_type}}
!a_tensor_type = tensor<{% for i in range(a_size) %}?x{% endfor %}!a_type>
!qs_raw_tensor_type = tensor<{% for i in range(b_size) %}?x{% endfor %}{{bs_i8}}xi8>
!qs_tensor_type = tensor<{% for i in range(b_size) %}?x{% endfor %}{{bs}}x!lowp_type>
!d_tensor_type = tensor<{% for i in range(b_size) %}?x{% endfor %}1x!scale_type>
!m_tensor_type = tensor<{% for i in range(b_size) %}?x{% endfor %}1x!scale_type>
!accum_tensor_type = tensor<{% for i in range(c_size) %}?x{% endfor %}!accum_type>
!c_tensor_type = tensor<{% for i in range(c_size) %}?x{% endfor %}!a_type>
!b_grouped_tensor_type = tensor<{% for i in range(b_size) %}?x{% endfor %}{{bs}}x!a_type>
!b_tensor_type = tensor<{% for i in range(b_size) %}?x{% endfor %}!a_type>

module {

util.func private @sharktank_einsum_2args_q4_{{es_name}}_{{bs}}_{{a_type}}(
%a: !a_tensor_type, %d: !d_tensor_type, %qs_raw: !qs_raw_tensor_type, %m: !m_tensor_type)
-> !c_tensor_type {
%debug = tensor.empty() : tensor<1xf32>
%zero = arith.constant 0.0: !accum_type
{% for i in range(a_size) %}
%k{{i}} = arith.constant {{i}} : index
{% endfor %}
{% for i in range(a_size, b_size) %}
%k{{i}} = arith.constant {{i}} : index
{% endfor %}
{% for i in range(a_size) %}
%a{{i}} = tensor.dim %a, %k{{i}}: !a_tensor_type
{% endfor %}
{% for i in range(b_size) %}
%b{{i}} = tensor.dim %qs_raw, %k{{i}}: !qs_raw_tensor_type
{% endfor %}
%bs = arith.constant {{bs}} : index
%b_unblocked_dim = arith.muli %b{{b_size-1}}, %bs : index

//%qs = flow.tensor.bitcast %qs_raw : !qs_raw_tensor_type -> !qs_tensor_type
%qs = flow.tensor.bitcast %qs_raw : !qs_raw_tensor_type{{"{"}}{% for i in range(b_size-1) %}%b{{i}},{% endfor %}%b{{b_size-1}}{{"}"}} -> !qs_tensor_type{{"{"}}{% for i in range(b_size-1) %}%b{{i}},{% endfor %}%b{{b_size-1}}{{"}"}}

// Dequantize.
%b_grouped = tensor.empty({% for i in range(b_size-1) %}%b{{i}},{% endfor %}%b{{b_size-1}}) : !b_grouped_tensor_type
%b_grouped_dequant = linalg.generic {
indexing_maps = [
{{dequant_indexing_maps}}],
iterator_types = [{{dequant_iterator_types}}] }
ins(%d, %m, %qs : !d_tensor_type, !m_tensor_type, !qs_tensor_type)
outs(%b_grouped : !b_grouped_tensor_type) {
^bb0(%d_element: !scale_type, %m_element: !scale_type, %q_element: !lowp_type, %out: !a_type):
%q_element_ext = arith.extui %q_element : !lowp_type to i32
%q_element_fp = arith.uitofp %q_element_ext : i32 to !a_type
{% if scale_type == a_type %}
%q_element_scaled = arith.mulf %q_element_fp, %d_element : !a_type
%q_element_offset = arith.addf %q_element_scaled, %m_element : !a_type
{% else %}
%d_element_ext = arith.extf %d_element : !scale_type to !a_type
%m_element_ext = arith.extf %m_element : !scale_type to !a_type
%q_element_scaled = arith.mulf %q_element_fp, %d_element_ext : !a_type
%q_element_offset = arith.addf %q_element_scaled, %m_element_ext : !a_type
{% endif %}
linalg.yield %q_element_offset : !a_type
} -> !b_grouped_tensor_type

// Collapse %b to the same unblocked structure.
%b_unblocked = tensor.collapse_shape %b_grouped_dequant [{% for i in range(b_size-1) %}[{{i}}], {% endfor %}[{{b_size-1}}, {{b_size}}]] : !b_grouped_tensor_type into !b_tensor_type

// Einsum
%result_empty = tensor.empty({{out_dyn_dim_size_str}}) : !accum_tensor_type
%result_fill = linalg.fill ins(%zero: !accum_type) outs(%result_empty: !accum_tensor_type) -> !accum_tensor_type
%result = linalg.generic {
indexing_maps = [
{{einsum_indexing_maps}}],
iterator_types = [{{einsum_iterator_types}}] }
ins(%a, %b_unblocked : !a_tensor_type, !b_tensor_type)
outs(%result_fill : !accum_tensor_type) {
^bb0(%a_element: !a_type, %b_element: !a_type, %out: !accum_type):
%bmm_mul = arith.mulf %a_element, %b_element : !a_type
{% if accum_type == a_type %}
%bmm_accum = arith.addf %bmm_mul, %out : !a_type
{% else %}
%bmm_mul_ext = arith.extf %bmm_mul : !a_type to !accum_type
%bmm_accum = arith.addf %bmm_mul_ext, %out : !accum_type
{% endif %}
linalg.yield %bmm_accum : !accum_type
} -> !accum_tensor_type

// Cast.
%result_cast_empty = tensor.empty({{out_dyn_dim_size_str}}) : !c_tensor_type
%result_cast = linalg.copy
ins(%result : !accum_tensor_type)
outs(%result_cast_empty : !c_tensor_type) -> !c_tensor_type

//iree_input.tensor.trace "foobar" = [%a : !a_tensor_type, %d : !d_tensor_type, %qs_raw: !qs_raw_tensor_type, %m: !m_tensor_type, %b_grouped_dequant: !b_grouped_tensor_type]
util.return %result_cast : !c_tensor_type
}

}
Loading
Loading