-
-
Notifications
You must be signed in to change notification settings - Fork 362
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
337 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
// | ||
// Copyright (C) 2024 nihui | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// | ||
|
||
#include "opencv2/dnn/dnn.hpp" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
// | ||
// Copyright (C) 2024 nihui | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// | ||
|
||
#ifndef OPENCV_DNN_HPP | ||
#define OPENCV_DNN_HPP | ||
|
||
#include "opencv2/core.hpp" | ||
|
||
namespace cv { | ||
namespace dnn { | ||
|
||
enum SoftNMSMethod | ||
{ | ||
SOFTNMS_LINEAR = 1, | ||
SOFTNMS_GAUSSIAN = 2 | ||
}; | ||
|
||
CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, | ||
const float score_threshold, const float nms_threshold, | ||
CV_OUT std::vector<int>& indices, | ||
const float eta = 1.f, const int top_k = 0); | ||
|
||
CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores, | ||
const float score_threshold, const float nms_threshold, | ||
CV_OUT std::vector<int>& indices, | ||
const float eta = 1.f, const int top_k = 0); | ||
|
||
CV_EXPORTS void NMSBoxesBatched(const std::vector<Rect>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids, | ||
const float score_threshold, const float nms_threshold, | ||
CV_OUT std::vector<int>& indices, | ||
const float eta = 1.f, const int top_k = 0); | ||
|
||
CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, | ||
CV_OUT std::vector<float>& updated_scores, | ||
const float score_threshold, const float nms_threshold, | ||
CV_OUT std::vector<int>& indices, | ||
size_t top_k = 0, const float sigma = 0.5, SoftNMSMethod method = SOFTNMS_GAUSSIAN); | ||
|
||
} // namespace dnn | ||
} // namespace cv | ||
|
||
#endif // OPENCV_DNN_HPP |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,259 @@ | ||
// | ||
// Copyright (C) 2024 nihui | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// | ||
|
||
#include <opencv2/core.hpp> | ||
#include <opencv2/imgproc.hpp> | ||
#include <opencv2/dnn.hpp> | ||
#include <limits> | ||
#include <vector> | ||
#include <algorithm> | ||
|
||
namespace cv { | ||
namespace dnn { | ||
|
||
static inline bool SortScorePairDescend(const std::pair<float, int>& pair1, const std::pair<float, int>& pair2) | ||
{ | ||
return pair1.first > pair2.first; | ||
} | ||
|
||
// Get max scores with corresponding indices. | ||
// scores: a set of scores. | ||
// threshold: only consider scores higher than the threshold. | ||
// top_k: if -1, keep all; otherwise, keep at most top_k. | ||
// score_index_vec: store the sorted (score, index) pair. | ||
inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k, | ||
std::vector<std::pair<float, int> >& score_index_vec) | ||
{ | ||
CV_DbgAssert(score_index_vec.empty()); | ||
// Generate index score pairs. | ||
for (size_t i = 0; i < scores.size(); ++i) | ||
{ | ||
if (scores[i] > threshold) | ||
{ | ||
score_index_vec.push_back(std::make_pair(scores[i], i)); | ||
} | ||
} | ||
|
||
// Sort the score pair according to the scores in descending order | ||
std::stable_sort(score_index_vec.begin(), score_index_vec.end(), SortScorePairDescend); | ||
|
||
// Keep top_k scores if needed. | ||
if (top_k > 0 && top_k < (int)score_index_vec.size()) | ||
{ | ||
score_index_vec.resize(top_k); | ||
} | ||
} | ||
|
||
// Do non maximum suppression given bboxes and scores. | ||
// Inspired by Piotr Dollar's NMS implementation in EdgeBox. | ||
// https://goo.gl/jV3JYS | ||
// bboxes: a set of bounding boxes. | ||
// scores: a set of corresponding confidences. | ||
// score_threshold: a threshold used to filter detection results. | ||
// nms_threshold: a threshold used in non maximum suppression. | ||
// top_k: if not > 0, keep at most top_k picked indices. | ||
// limit: early terminate once the # of picked indices has reached it. | ||
// indices: the kept indices of bboxes after nms. | ||
template <typename BoxType> | ||
inline void NMSFast_(const std::vector<BoxType>& bboxes, | ||
const std::vector<float>& scores, const float score_threshold, | ||
const float nms_threshold, const float eta, const int top_k, | ||
std::vector<int>& indices, | ||
float (*computeOverlap)(const BoxType&, const BoxType&), | ||
int limit = std::numeric_limits<int>::max()) | ||
{ | ||
CV_Assert(bboxes.size() == scores.size()); | ||
|
||
// Get top_k scores (with corresponding indices). | ||
std::vector<std::pair<float, int> > score_index_vec; | ||
GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec); | ||
|
||
// Do nms. | ||
float adaptive_threshold = nms_threshold; | ||
indices.clear(); | ||
for (size_t i = 0; i < score_index_vec.size(); ++i) { | ||
const int idx = score_index_vec[i].second; | ||
bool keep = true; | ||
for (int k = 0; k < (int)indices.size() && keep; ++k) { | ||
const int kept_idx = indices[k]; | ||
float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]); | ||
keep = overlap <= adaptive_threshold; | ||
} | ||
if (keep) { | ||
indices.push_back(idx); | ||
if ((int)indices.size() >= limit) { | ||
break; | ||
} | ||
} | ||
if (keep && eta < 1 && adaptive_threshold > 0.5) { | ||
adaptive_threshold *= eta; | ||
} | ||
} | ||
} | ||
|
||
static inline float rectOverlap(const Rect& a, const Rect& b) | ||
{ | ||
return 1.f - static_cast<float>(jaccardDistance(a, b)); | ||
} | ||
|
||
void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, | ||
const float score_threshold, const float nms_threshold, | ||
std::vector<int>& indices, const float eta, const int top_k) | ||
{ | ||
CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0, nms_threshold >= 0, eta > 0); | ||
|
||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); | ||
} | ||
|
||
static inline float rotatedRectIOU(const RotatedRect& a, const RotatedRect& b) | ||
{ | ||
std::vector<Point2f> inter; | ||
int res = rotatedRectangleIntersection(a, b, inter); | ||
if (inter.empty() || res == INTERSECT_NONE) | ||
return 0.0f; | ||
if (res == INTERSECT_FULL) | ||
return 1.0f; | ||
float interArea = contourArea(inter); | ||
return interArea / (a.size.area() + b.size.area() - interArea); | ||
} | ||
|
||
void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores, | ||
const float score_threshold, const float nms_threshold, | ||
std::vector<int>& indices, const float eta, const int top_k) | ||
{ | ||
CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0, nms_threshold >= 0, eta > 0); | ||
|
||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rotatedRectIOU); | ||
} | ||
|
||
static inline void NMSBoxesBatchedImpl(const std::vector<Rect>& bboxes, | ||
const std::vector<float>& scores, const std::vector<int>& class_ids, | ||
const float score_threshold, const float nms_threshold, | ||
std::vector<int>& indices, const float eta, const int top_k) | ||
{ | ||
int x1, y1, x2, y2, max_coord = 0; | ||
for (size_t i = 0; i < bboxes.size(); i++) | ||
{ | ||
x1 = bboxes[i].x; | ||
y1 = bboxes[i].y; | ||
x2 = x1 + bboxes[i].width; | ||
y2 = y1 + bboxes[i].height; | ||
|
||
max_coord = std::max(x1, max_coord); | ||
max_coord = std::max(y1, max_coord); | ||
max_coord = std::max(x2, max_coord); | ||
max_coord = std::max(y2, max_coord); | ||
} | ||
|
||
// calculate offset and add offset to each bbox | ||
std::vector<Rect> bboxes_offset; | ||
for (size_t i = 0; i < bboxes.size(); i++) | ||
{ | ||
int offset = class_ids[i] * (max_coord + 1); | ||
bboxes_offset.push_back(Rect(bboxes[i].x + offset, bboxes[i].y + offset, bboxes[i].width, bboxes[i].height)); | ||
} | ||
|
||
NMSFast_(bboxes_offset, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); | ||
} | ||
|
||
void NMSBoxesBatched(const std::vector<Rect>& bboxes, | ||
const std::vector<float>& scores, const std::vector<int>& class_ids, | ||
const float score_threshold, const float nms_threshold, | ||
std::vector<int>& indices, const float eta, const int top_k) | ||
{ | ||
CV_Assert_N(bboxes.size() == scores.size(), scores.size() == class_ids.size(), nms_threshold >= 0, eta > 0); | ||
|
||
NMSBoxesBatchedImpl(bboxes, scores, class_ids, score_threshold, nms_threshold, indices, eta, top_k); | ||
} | ||
|
||
void softNMSBoxes(const std::vector<Rect>& bboxes, | ||
const std::vector<float>& scores, | ||
std::vector<float>& updated_scores, | ||
const float score_threshold, | ||
const float nms_threshold, | ||
std::vector<int>& indices, | ||
size_t top_k, | ||
const float sigma, | ||
SoftNMSMethod method) | ||
{ | ||
CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0, nms_threshold >= 0, sigma >= 0); | ||
|
||
indices.clear(); | ||
updated_scores.clear(); | ||
|
||
std::vector<std::pair<float, size_t> > score_index_vec(scores.size()); | ||
for (size_t i = 0; i < scores.size(); i++) | ||
{ | ||
score_index_vec[i].first = scores[i]; | ||
score_index_vec[i].second = i; | ||
} | ||
|
||
const auto score_cmp = [](const std::pair<float, size_t>& a, const std::pair<float, size_t>& b) | ||
{ | ||
return a.first == b.first ? a.second > b.second : a.first < b.first; | ||
}; | ||
|
||
top_k = top_k == 0 ? scores.size() : std::min(top_k, scores.size()); | ||
ptrdiff_t start = 0; | ||
while (indices.size() < top_k) | ||
{ | ||
auto it = std::max_element(score_index_vec.begin() + start, score_index_vec.end(), score_cmp); | ||
|
||
float bscore = it->first; | ||
size_t bidx = it->second; | ||
|
||
if (bscore < score_threshold) | ||
{ | ||
break; | ||
} | ||
|
||
indices.push_back(static_cast<int>(bidx)); | ||
updated_scores.push_back(bscore); | ||
std::swap(score_index_vec[start], *it); // first start elements are chosen | ||
|
||
for (size_t i = start + 1; i < scores.size(); ++i) | ||
{ | ||
float& bscore_i = score_index_vec[i].first; | ||
const size_t bidx_i = score_index_vec[i].second; | ||
|
||
if (bscore_i < score_threshold) | ||
{ | ||
continue; | ||
} | ||
|
||
float overlap = rectOverlap(bboxes[bidx], bboxes[bidx_i]); | ||
|
||
switch (method) | ||
{ | ||
case SoftNMSMethod::SOFTNMS_LINEAR: | ||
if (overlap > nms_threshold) | ||
{ | ||
bscore_i *= 1.f - overlap; | ||
} | ||
break; | ||
case SoftNMSMethod::SOFTNMS_GAUSSIAN: | ||
bscore_i *= exp(-(overlap * overlap) / sigma); | ||
break; | ||
default: | ||
CV_Error(Error::StsBadArg, "Not supported SoftNMS method."); | ||
} | ||
} | ||
++start; | ||
} | ||
} | ||
|
||
} // namespace dnn | ||
} // namespace cv |