-
Notifications
You must be signed in to change notification settings - Fork 10
add test coverage table to github summary #368
Changes from 17 commits
42e25e4
6a3e374
10a86fa
51cc2c0
4f7cc03
3704e8f
6cd7ae4
81558fd
12cb478
5e7022d
a27b1ee
e6563ee
9a9d681
b27c1cf
844715b
179d2c2
21268c4
884ffe8
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
# this script parses the provided coverage JSON file to report | ||
# the results broken down into categories of interest. | ||
import argparse | ||
from collections import UserDict | ||
from pathlib import Path | ||
from typing import Optional | ||
|
||
import pandas as pd | ||
|
||
|
||
class CoverageMetrics(UserDict): | ||
""" | ||
encapsulates code coverage metrics | ||
""" | ||
|
||
def __init__(self, user_dict): | ||
super().__init__(user_dict) | ||
if "percent_covered_display" in self.data: | ||
del self.data["percent_covered_display"] | ||
|
||
|
||
class CodeCoverage: | ||
""" | ||
reads and reports on code coverage data as generated by the coverage tool | ||
""" | ||
|
||
def __init__(self, file_path: Path): | ||
self.format: [int, None] = None | ||
self.version: [str, None] = None | ||
self.timestamp: [str, None] = None | ||
self.show_contexts: [bool, None] = None | ||
self.branch_coverage: [bool, None] = None | ||
self.overall_metrics: [CoverageMetrics, None] = None | ||
self.tests: [pd.Series, None] = None | ||
self.source: [pd.Series, None] = None | ||
|
||
if file_path.suffix == ".json": | ||
if not file_path.exists(): | ||
raise ValueError(f"{file_path} not found") | ||
self._from_json(file_path) | ||
else: | ||
raise ValueError("only coverage json reports are supported") | ||
|
||
def _from_json(self, json_file_path: Path): | ||
""" | ||
loads the code coverage data from a JSON report generated with | ||
`coverage json` | ||
:param json_file_path: path to the file to load | ||
""" | ||
coverage_df = pd.read_json(json_file_path, orient="records") | ||
self.format = coverage_df["meta"]["format"] | ||
self.version = coverage_df["meta"]["version"] | ||
self.timestamp = coverage_df["meta"]["timestamp"] | ||
self.show_contexts = coverage_df["meta"]["show_contexts"] | ||
self.branch_coverage = coverage_df["meta"]["branch_coverage"] | ||
self.overall_metrics = CoverageMetrics( | ||
coverage_df["totals"].dropna().to_dict()) | ||
|
||
# segment the list of files by test cases and source code | ||
files_df = coverage_df.loc[:, ['files']].dropna() | ||
self.tests = files_df.iloc[files_df.index.str.startswith("tests/")] | ||
self.source = files_df[~files_df.index.isin(self.tests.index)] | ||
|
||
# add a column to the list of source files to facilitate grouping | ||
# metrics by top level directories under vllm | ||
def get_sub_dir(file_path): | ||
file_parts = Path(file_path).parts | ||
subdir = file_parts[file_parts.index("vllm") + 1] | ||
if subdir == Path(file_path).name: | ||
# we're at the root of the vllm dir, so leave subdir empty | ||
subdir = "" | ||
return subdir | ||
|
||
# temporarily move the index to a "filepath" column | ||
self.source.reset_index(names="filepath", inplace=True) | ||
# extract subdirectories under vllm, put into the sub_dir column | ||
self.source.loc[:, "sub_dir"] = self.source.loc[:, "filepath"].apply( | ||
get_sub_dir) | ||
# make the filepath column the index again | ||
self.source.set_index("filepath", inplace=True) | ||
|
||
@staticmethod | ||
def _calculate_metrics(coverage_data: pd.Series) -> CoverageMetrics: | ||
""" | ||
common method to calculate metrics | ||
""" | ||
metrics_dict = {} | ||
for metric in [ | ||
"covered_lines", "num_statements", "missing_lines", | ||
"excluded_lines" | ||
]: | ||
metrics_dict[metric] = sum(d[0]["summary"][metric] | ||
for d in coverage_data) | ||
metrics_dict["percent_covered"] = metrics_dict[ | ||
"covered_lines"] / metrics_dict["num_statements"] * 100 | ||
return CoverageMetrics(metrics_dict) | ||
|
||
def tests_metrics(self) -> CoverageMetrics: | ||
""" | ||
creates summary metrics for all tests | ||
""" | ||
return self._calculate_metrics(self.tests.values) | ||
|
||
def source_metrics(self, sub_dir: Optional[str] = None) -> CoverageMetrics: | ||
""" | ||
creates summary metrics for the requested vllm subdirectory, | ||
or for the reported vllm source if a subdirectory is not specified. | ||
sub_dir = "" will report for files directly under vllm | ||
""" | ||
data = self.source | ||
if sub_dir is not None: | ||
data = self.source[self.source["sub_dir"] == sub_dir] | ||
|
||
return self._calculate_metrics(data.values) | ||
|
||
def to_github_markdown(self) -> str: | ||
""" | ||
returns a string in the form of github compatible markdown with top | ||
level and drill down metrics. | ||
""" | ||
# make a dataframe with top level metric summary info | ||
overall_metrics = self.overall_metrics | ||
overall_metrics["Collection"] = "Overall" | ||
test_metrics = self.tests_metrics() | ||
test_metrics["Collection"] = "Test Code" | ||
source_metrics = self.source_metrics() | ||
source_metrics["Collection"] = "Source Code" | ||
summary_df = pd.DataFrame( | ||
[overall_metrics, test_metrics, source_metrics]) | ||
# make percent_covered value compatible with the string "%" formatting | ||
summary_df["percent_covered"] = summary_df["percent_covered"] / 100 | ||
|
||
# compose a set of the subdirectory breakdown summary info | ||
breakdown_list = [] | ||
for sub_dir in sorted(cc.source["sub_dir"].unique()): | ||
sub_dir_metrics = cc.source_metrics(sub_dir) | ||
label = "vllm 'root'" if sub_dir == "" else sub_dir | ||
sub_dir_metrics["Collection"] = label | ||
breakdown_list.append(sub_dir_metrics) | ||
breakdown_df = pd.DataFrame(breakdown_list) | ||
# make percent_covered value compatible with the string "%" formatting | ||
breakdown_df["percent_covered"] = breakdown_df["percent_covered"] / 100 | ||
|
||
# join the top level and breakdown data with separator rows between them | ||
# add a separator row and subtitle row | ||
empty_row_df = pd.Series( | ||
pd.NA, index=summary_df.columns).to_frame().transpose() | ||
header_row_df = empty_row_df.copy() | ||
header_row_df["Collection"] = "vllm Subdirs" | ||
summary_df = pd.concat( | ||
[summary_df, empty_row_df, header_row_df, breakdown_df], | ||
ignore_index=True) | ||
# clean up the `nan` values for display purposes | ||
summary_df = summary_df.astype(str) | ||
summary_df.replace({"nan": None}, inplace=True) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. quick question, how do we generate "nan"? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this was "fun" 😉 . to get that empty row and header row between the overall info and the per-sub-directory breakdown I needed to add that |
||
|
||
return summary_df.to_markdown(index=False, | ||
tablefmt="github", | ||
missingval="", | ||
floatfmt=(".0f", ".0f", ".0f", ".0f", | ||
".0f", ".1%"), | ||
colalign=("left", "right", "right", | ||
"right", "right", "decimal")) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("coverage_json_file", | ||
type=str, | ||
help="file path to coverage JSON output") | ||
args = parser.parse_args() | ||
cc = CodeCoverage(Path(args.coverage_json_file)) | ||
|
||
print(cc.to_github_markdown()) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. i like that you are outputting to a file. this makes it easy to run locally. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the table ends up looking nice.