-
Notifications
You must be signed in to change notification settings - Fork 85
training_bert
[TOC]
we recommend using Anaconda to set up your own python virtual environment.
# in case of pip install error, change the pip source may help
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# build virtual environment
conda env create -f environment.yaml
# activate virtual environment
conda activate maas
-
Install
git-lfs
Git Large File Storage -
Clone resources repository
git clone http://www.modelscope.cn/damo/speech_sambert-hifigan_tts_zhitian_emo_zh-cn_16k.git
.
├── configuration.json
├── description
├── README.md
├── resource
├── resource.zip <----- dependency resources
└── voices.zip
The resource.zip
will be used in the next step.
Currently, we support plain text data
.
Make sure the plain text data file like the following:
徐玠诡谲多智,善揣摩,知道徐知询不可辅佐,掌握着他的短处以归附徐知诰。
许乐夫生于山东省临朐县杨善镇大辛庄,毕业于抗大一分校。
宣统元年(1909年),顺德绅士冯国材在香山大黄圃成立安洲农务分会,管辖东海十六沙,冯国材任总理。
学生们大多住在校区宿舍,通过参加不同的体育文化俱乐部及社交活动,形成一个友谊长存的社会圈。
学校的“三节一会”(艺术节、社团节、科技节、运动会)是显示青春才华的盛大活动。
雪是先天自闭症患者,不懂与人沟通,却拥有灵敏听觉,而且对复杂动作过目不忘。
勋章通过一柱状螺孔和螺钉附着在衣物上。
雅恩雷根斯堡足球俱乐部()是一家位于德国雷根斯堡的足球俱乐部,处于德国足球丙级联赛。
亚历山大·格罗滕迪克于1957年证明了一个深远的推广,现在叫做格罗滕迪克–黎曼–罗赫定理。
...
...
For quick start: A demo dataset is available on xxx.
python kantts/preprocess/text_process.py --text_file TEXT_FILE_PATH --resources_zip_file RESOURCE_ZIPFILE_PATH --output_dir OUTPUT_DATA_FEATURE_PATH
Then you get the features for training.
.
├── bert_train.lst
├── bert_valid.lst
└── raw_metafile.txt
Our training recipe is config driven, a default Bert model config can be found kantts/configs/sybert.yaml
, you can do some modifications on that config and create your own Bert model :)
Now you have got the sword and shield(data and model :-|), go have a try.
CUDA_VISIBLE_DEVICES=0 python kantts/bin/train_sybert.py --model_config YOUR_MODEL_CONFIG --root_dir OUTPUT_DATA_FEATURE_PATH --stage_dir TRAINING_STAGE_PATH
If your GPU devices are enough, you can use distributed training, which is a lot faster than single GPU training. For example, assign GPU device indexes with CUDA_VISIBLE_DEVICES
system variable, --nproc_per_node
denotes the count of GPU devices.
CUDA_VISIBLE_DEVICES=0,1,2,4 python -m pytorch.distributed.launch --nproc_per_node=4 kantts/bin/train_sybert.py --model_config YOUR_MODEL_CONFIG --root_dir ~OUTPUT_DATA_FEATURE_PATH --stage_dir TRAINING_STAGE_PATH
--resume_path
can be used to resume training with a pre-trained model, or continue training from a previous checkpoint.
CUDA_VISIBLE_DEVICES=0 python kantts/bin/train_sybert.py --model_config YOUR_MODEL_CONFIG --root_dir ~OUTPUT_DATA_FEATURE_PATH --stage_dir TRAINING_STAGE_PATH --resume_path CHECKPOINT_PATH
After training is done, your TRAIING_STAGE_PATH
looks like below
.
├── ckpt/
├── config.yaml
├── log/
└── stdout.log
Model checkpoints are stored in ckpt
directory,
./ckpt
├── checkpoint_10000.pth
├── checkpoint_12000.pth
├── checkpoint_14000.pth
├── checkpoint_16000.pth
├── checkpoint_18000.pth
├── checkpoint_2000.pth
├── checkpoint_4000.pth
├── checkpoint_6000.pth
└── checkpoint_8000.pth
XXXXXX XXXXXX
XXXXXX XXXXXX
Our implementation refers to the following repositories and papers.
[ming024's FastSpeech2 Implementation] (https://github.com/ming024/FastSpeech2)
[Bert] (https://arxiv.org/abs/1810.04805)